首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
提出了一种固体表面热变形求解新方法(ITD),由此研究了热变形对高速点接触弹流润滑行为的影响. 为此,基于计入流体惯性项的Reynolds方程获得了油膜压力,采用追赶法对润滑剂和接触固体的温度进行了求解,进而研究了不同工况下有无热变形的高速点接触非牛顿热弹流润滑性能. 采用有限元法和离散累加法对ITD法进行了验证,通过中心膜厚试验验证了考虑热变形的正确性. 结果表明:ITD法可准确快速地计算表面热变形;考虑热变形后,油膜厚度降低且向油膜出口倾斜,考虑热变形后的中心膜厚更接近试验结果.   相似文献   

2.
从实验中观测到的特殊乏油现象出发,提出1种特殊供油条件函数,求出点接触弹性流体动力润滑的完全数值解,定性模拟实验中的特殊乏油现象,并分析供油条件函数中的参数与中心膜厚和最小膜厚的关系.结果表明:供油油膜的两突起导致相应的压力、部分油膜比例和润滑油膜分布中也出现两突起;供油油膜的两突起能够扩大压力区和充分供油区域,能够局部改善润滑效果,但是对中心膜厚和最小膜厚影响很小;供油油量主要影响润滑状态,而供油油膜的形状在不同程度上也会影响润滑状态.  相似文献   

3.
针对点接触弹流润滑的粗糙度效应,建立了考虑表面粗糙度动态变化的点接触弹流润滑模型,实现了油膜厚度和压力分布的快速求解. 对点接触弹流润滑下的粗糙表面弹性变形进行了定性和定量研究,同时分析了表面均方根粗糙度、载荷、相对运动速度和滑滚比对最小膜厚和最大压力的影响,以及表面形貌动态变化对膜厚比的影响. 结果表明:形貌变化改变了弹流油膜和压力分布特性,相对于光滑表面,表面粗糙度总体上提高了最大接触压力、降低了最小膜厚,在轻载工况下表面粗糙度对油膜厚度的削弱更加显著,而不同速度下粗糙度的影响程度基本相同,呈现线性变化趋势,膜厚比随载荷增大呈现先增后减的变化趋势,并在530 MPa左右达到峰值.   相似文献   

4.
磨损表面轮廓对点接触热弹流润滑的影响   总被引:3,自引:4,他引:3  
郭峰  杨沛然 《摩擦学学报》1999,19(3):266-270
研究了由磨损引起的接触表面几何轮廓的改变对点接触润滑效应的影响。引入磨平系数rw来表征接触区的磨平区域大小。在0≤rw≤的范围内,通过不同工况参数下热弹流的安全数值求解,发现最小膜厚随rw的增大而减小,中心膜厚随rw的增大而增大;而rw的增大而增大;而rw对油膜最大压力、最高温升及摩擦系数的影响较小。  相似文献   

5.
纯滑动点接触弹流润滑反常现象的理论分析   总被引:1,自引:3,他引:1  
对点接触纯滑动弹流润滑进行了理论分析 ,应用“温度 -粘度楔”机理给出了关于 Kaneta等在光干涉弹流实验中观察到的油膜局部增厚的反常现象的合理解释 .数值解说明上述实验中固体表面出现凹陷主要是因热效应所致 .  相似文献   

6.
高速极重载热弹流润滑分析   总被引:2,自引:1,他引:2  
求出了高速极重载工况下线接触热弹性流体动力润滑问题的数值解,并对摩擦副进行了应力分析。指出粘度高和粘压系数大的润滑油虽可增加油膜厚度,但亦会加速表面的疲劳磨损。  相似文献   

7.
自旋对椭圆接触热弹流润滑的影响   总被引:3,自引:2,他引:1  
郇艳  杨沛然 《摩擦学学报》2009,29(6):612-617
通过数值求解研究了自旋运动对热弹流润滑的影响,分析了不同载荷下自旋对压力?最小油膜厚度?油膜中层温度的影响以及滑滚比?角速度对油膜中层温度的影响.结果表明:载荷越重时油膜压力越大,油膜整体厚度越小,同时油膜顶部倾斜度越大,关于y=0截面油膜厚度曲线的不对称性越明显.自旋存在使得滑滚比不再是常数,而滑滚比越大之处温升越大,因此润滑油膜的温度分布不再关于y=0截面对称;另外,角速度越高则油膜中层温升越大,而出口峰值越靠近接触中心.  相似文献   

8.
选用镀Cr膜的玻璃盘和GCr15球作为摩擦副,在NGY-6纳米润滑膜测量仪上开展球-盘点接触摩擦副在润滑状态下的低速轻载滑滚特性试验,研究不同接触应力、钢球转速、滑滚比等参数对摩擦副的摩擦系数及对应油膜厚度的影响规律.结果表明:当接触应力和钢球转速一定时,摩擦系数随滑滚比的增大逐渐增加后达到稳定状态,当滑滚比较大时,滑滚比的变化对油膜厚度几乎没有影响;当滑滚比一定时,摩擦系数随接触应力的增大逐渐增大,随钢球转速的增大逐渐减小,油膜厚度随接触应力的增大逐渐减小,随钢球转速的增大逐渐增大.摩擦副在弹流润滑状态下,摩擦系数的增加幅度随接触应力的变化较小,而在薄膜润滑状态下,其增加幅度变大.摩擦副在薄膜润滑状态下,当滑滚比在0.10~0.50变化时,摩擦系数和油膜厚度基本处于稳定状态.  相似文献   

9.
基于表面凹陷现象的非牛顿热弹流润滑分析   总被引:1,自引:2,他引:1  
求出了非牛顿流体点接触热弹流润滑问题的完全数值解,并对玻璃一钢点接触的表面凹陷现象进行了理论及实验分析,结果表明:牛顿流体模型过高地估计了温度-粘度楔效应,而Ree-Eyring非牛顿流体模型能更好地解释温度-粘度楔效应.  相似文献   

10.
点、线接触真实粗糙表面的弹流润滑研究   总被引:6,自引:1,他引:6  
黄平  温诗铸 《力学学报》1993,25(3):302-308
本文给出了点、线接触的真实粗糙表面的微弹流数值解。在给定随机粗糙表面样本后,求解大小不同的载荷和粗糙的弹流问题。从计算结果可以看出,由于Reynolds方程中速度项的作用,在表面对应粗糙的位置处引起了压力变化,从而因其产生的弹性变形使粗糙变得平滑。对此光滑表面解可以看出,因粗糙引起的压力和膜厚的变化在光滑解附近波动。载荷较大时,压力分节接近固体接触情况。  相似文献   

11.
使用常用的Hamrock-Dowson公式计算椭圆点接触中心油膜厚度时发现:当维持接触区中心赫兹压力为常数,增加椭圆比ke超过一定值时,得到的中心膜厚不升反降,这与其物理本质相悖. 应用有限单元法重新对等温椭圆接触弹流润滑问题进行了数值计算,提出新的表征椭圆接触的综合几何参数. 在较大的速度和载荷范围内下,依据数值计算结果,拟合出修正端泄因子和修正中心膜厚公式. 修正公式与数值计算结果相吻合,且正确地表达了膜厚与椭圆比的关系.   相似文献   

12.
在工程弹流润滑中两固体表面速度方向并不总是相同,当两表面速度大小相同而方向不同时,卷吸行为与滑动行为正交.针对该工作条件建立了热弹流润滑数学模型,得到完全数值解.数值模拟了固定卷吸速度条件下,当表面速度间夹角变化时油膜厚度和形状的改变.结果显示:随夹角增加中央膜厚增加,最小膜厚表现出先减小后增加的趋势.这种变化是几何楔与热黏度楔的共同作用的结果,也为近期Hoehn等膜厚随夹角不同的实验结果提供了另一种解释.  相似文献   

13.
油气润滑条件下润滑油以微油滴形式供给摩擦副,基于此建立了简化的单个微油滴供油弹流润滑模型,模拟了微油滴通过弹流接触区的全过程.结果表明:卷吸速度和润滑油黏度会影响微油滴的扩展距离,进而使接触区油膜的形成产生差异.卷吸速度越高,或润滑油黏度越大,微油滴的扩展距离就会越小,油膜仅在接触区中部区域产生,微油滴类似硬质颗粒般在接触表面挤压出凹坑穿过接触区.理论结果和实验结果对比,具有良好的一致性.  相似文献   

14.
油膜厚度预测在评估弹流润滑(EHL)下角接触球轴承的性能和耐久性方面发挥着重要的作用. 耦合拟静力学理论和自旋下椭圆接触弹流模型,以干接触角接触球轴承拟静力学分析方法为基础,建立了定压和定位预紧方式下考虑弹流润滑和钢球自旋运动的角接触球轴承的拟静力学分析模型. 采用快速傅里叶变换(FFT)计算椭圆接触的弹性变形,运用Gauss-Seidel迭代方法求解Reynolds方程,得到自旋弹流模型的完全数值解,将其代入轴承拟静力学模型中迭代,得到轴承内部接触载荷、三维接触压力及三维膜厚分布. 对采用不同预紧方式的SKF7210型角接触球轴承进行分析,结果表明:富油润滑下,当轴承转速从0增大到15 000 r/min时,定压预紧时内圈轴向位移减小17.83%,而定位预紧时内圈承受的轴向载荷增大23.17%;定压预紧方式下球与内外滚道间膜厚均略大于定位预紧. 此外,不同预紧方式下,外圈上的中心膜厚大于内圈10%. 与干接触相比,定压下考虑弹流润滑内圈上接触载荷略大0.64%.   相似文献   

15.
油-气润滑技术已经广泛应用于常规零部件润滑设计中,通过合理制定润滑工艺方案,能有效减小接触副之间的摩擦,达到最佳润滑状态.选用45钢圆盘和GCr15球作为摩擦副材料,在MFT-3000摩擦磨损试验机上开展球-盘点接触副油-气润滑试验,同时结合油-气润滑流场数值模拟考察喷射方位、供油量和供气速度等不同润滑参数对点接触副摩擦特性的影响规律.结果表明:合理的喷射方位下点接触区域油相分布较为均匀,并有利于压缩气体将润滑油以微油滴形式喷射至摩擦副表面,润滑油滴与摩擦副表面发生碰撞、黏附和铺展等作用后形成油膜层,从而降低摩擦系数,提高润滑性能;供油量和供气速度对空间流场油相分布影响较为明显,在一定范围内,供油量的增加和适当的供气速度均能够改善油-气润滑效果.  相似文献   

16.
步态条件下人工膝关节线接触弹流润滑分析   总被引:1,自引:0,他引:1  
参照关节模拟试验机的运动和力学参数,利用多重网格技术对人工膝关节摩擦副进行了1个步态周期仿人体环境线接触弹流润滑仿真,关节支承表面的弹性变形按半无限体计算.同时,观察了几种参数对流体压力分布和膜厚形状的影响.结果表明:在1个步态周期内,中心压力与载荷变化基本相同,且等效曲率半径的变化会引起中心压力的跳跃.站立相时在卷吸和挤压膜效应的共同作用下,中心膜厚呈逐步减小并伴随着波动;摆动相时,载荷固定,膜厚的变化主要与卷吸速度有关.减小胫骨平台曲率半径有助于提高滑液膜厚度;延长步态周期的时间,会使滑液膜厚减小.  相似文献   

17.
针对现有双渐开线齿轮温度场计算模型不考虑油膜润滑影响的问题,根据双渐开线齿轮啮合特点,提出采用“分段法”建立适合双渐开线齿轮的热弹流润滑模型,综合有限元法和热弹流润滑方法对其本体温度进行研究,并以润滑油膜为热源对其瞬时温升进行研究,最后分析了齿腰分阶参数对双渐开线齿轮温度场影响以及与普通渐开线齿轮温度场差异. 结果表明:双渐开线齿轮本体温度沿齿宽方向呈非对称分布,主动轮最高本体温度偏向齿根啮入端,从动轮偏向齿顶啮出端;啮合齿面间的油膜瞬时温升明显高于两齿轮界面温升,且主动轮界面瞬时温升高于从动轮;齿腰分阶参数变化对双渐开线齿轮温度场影响较小;双渐开线齿轮与普通渐开线齿轮的本体温度及齿面瞬时温升区别不大.   相似文献   

18.
本文求解了纯滑动点接触热弹性流体动力润滑问题.分析中假设运动表面为光滑表面,静止表面在接触中心有1个垂直于卷吸速度方向的横向突起.将计算域划为乏油区、压力区和气穴区3个子区,乏油区和气穴区的压力计算算法一致,但是温度的计算方法不同.研究结果显示:在乏油工况下,油膜中压力和温度均在入口处新月形液面处开始建立,入口区乏油程度的增加会导致油膜中压力分布趋近于干接触状态,油膜中平均温度得以提高,最大压力和温度均出现在赫兹接触圆两侧的宏观马蹄形区域.同全膜润滑相比,油膜厚度被明显降低,并且随着乏油程度的增加,静止表面的突起逐渐被压平.  相似文献   

19.
利用光干涉技术研究了微油滴通过弹流润滑接触区的润滑行为,考察了油滴大小、卷吸速度和载荷等因素的影响.结果表明微油滴在入口区域因挤压或毛细力效应发生表面积扩展,从而影响润滑膜的形成.油滴越大,挤压扩展直径越大,形成的膜厚越大.卷吸速度越高,入口处微油滴表面积扩展越不充分,仅接触区局部形成油膜,微油滴在接触表面挤压出凹坑穿过接触区.  相似文献   

20.
圆锥滚子的等温弹流润滑数值分析   总被引:4,自引:3,他引:1  
通过数值求解研究了圆台与平面之间的等温弹流润滑问题,分析了两固体所形成的弹流润滑区内压力和膜厚分布曲面,并且讨论了端部修形对接触区内压力和膜厚的影响.结果表明:由于圆锥滚子几何形状的特点,导致接触区内压力和膜厚的分布曲面出现斜度;圆锥滚子的端部修形可以降低端部高压,增加端部油膜厚度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号