首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decay of the 17 μs isomer of 133Sb was re-investigated experimentally. It was produced by thermal neutron induced fission of 241Pu. Its detection is based on time correlation between fission fragments selected by the LOHENGRIN spectrometer at ILL (Grenoble), and the γ-rays, and conversion electrons from the isomer. The interpretation of the level scheme is based on shell model calculations, where empirical two-body matrix elements were employed. The good agreement between theory and experiment suggests that the isomer is the 21/2+ member of the 2p-1h πg 7/2ν(f 7/2 h 11/2 −1) configuration. Received: 20 January 2000 / Revised version: 28 February 2000  相似文献   

2.
The fully correlated calculations of the Zeeman gJ factors for the first three quartet S states of lithium are presented, including relativistic and radiative corrections of orders α2, α2 m/M, and α3. The isotope shifts in gJ are predicted precisely for various isotopes of lithium. Received 4 December 2000 and Received in final form 26 September 2001  相似文献   

3.
We have extended the balance equations to account for conduction-valence interband impact ionization (II) process induced by an intense terahertz (THz) electromagnetic irradiation in semiconductors, and applied them to study the II effect on electron transport and electron-hole pair generation-recombination rate in THz-driven InAs/AlSb heterojunctions (HJ). As many as needed multiphoton channels are self-consistently taken into account for yielding a given accuracy. The time evolution of transport state including THz-radiation-induced II process are monitored in details by an extensive time-dependent analysis. Two different physical stages, the quasi-steady state and the complete steady-state, are clearly identified from the present calculations. Intersubband electron transfer rate and net electron-hole generation rate are derived as functions of the THz radiation strength E ac for various radiation frequencies from f ac = 0.42 to 6 THz at lattice temperatures T = 6 K. It's indicated that the THz radiation with a larger E ac or a lower f ac, has a stronger effect on electron transport and II process. Qualitative agreement is obtained between the calculated electron-hole generation rate and the available experimental data for InAs/AlSb HJ's at T = 6 K. Received 24 May 2002 / Received in final form 26 August 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: jccao8@hotmail.com  相似文献   

4.
Eighteen previously unknown γ-ray transitions were identified in the T z = - 1/2 nucleus 51Fe following the fusion-evaporation reaction 32S(28Si,2α1n)51Fe. The level scheme reaches the fully aligned I π = 27/2- terminating state of the five holes in the f 7/2 shell. The 17/2- state was found to be isomeric, and the lifetime was measured to be 2.87 ns. The mirror symmetry of 51Fe and 51Mn is discussed, and the level scheme of 51Fe is compared to shell-model calculations. Received: 20 July 2000 / Accepted: 1 August 2000  相似文献   

5.
The magneto-optical and magnetic properties of Nd 3+ ions in Y 3Fe 5O 12 garnet are analyzed by using quantum theory. In the spontaneous state, the magneto-optical effects originate mainly from the intra-ionic electric dipole transitions between the 4 f 3 and 4 f 25d states split by the spin-orbit, crystal field, and superexchange interactions. For the excited configuration, the coupling scheme of Yanase is extended to the Nd 3+ ion. The magneto-optical resonance frequencies are mainly determined by the splitting of the 5d states induced by the crystal field. The theoretical results of both Nd magnetization and Faraday rotation are in good agreement with experiments. The observed Faraday rotation is proved to be of the paramagnetic type. Although the value of the magneto-optical resonance frequency derived from a macroscopic analysis is approximately confirmed by our theoretical study, a new assignment about the transitions associated with this resonance is unambiguously determined. The spin-orbit coupling of the ground configuration has a great influence on both the Faraday rotation and magnetization, but, unlike the theoretical results obtained in some metals and alloys, the relation between the Faraday rotation and the spin-orbit coupling strength is more complex than a linear one. The magnitude of the magneto-optical coefficient increases as the spin-orbit interaction strength of the ground configuration decreases when the strength is not very weak. Finally, the temperature dependence of the magneto-optical coefficient and the effect of the mixing of different ground-term multiplets induced by the crystal field are analyzed. Received 8 November 2000  相似文献   

6.
The ground and a few excited states of the beryllium atom in external uniform magnetic fields are calculated by means of our 2D mesh Hartree-Fock method for field strengths ranging from zero up to 2.35×109 T. With changing field strength the ground state of the Be atom undergoes three transitions involving four different electronic configurations which belong to three groups with different spin projections S z = 0, - 1, - 2. For weak fields the ground state configuration arises from the 1s 22s 2, S z = 0 configuration. With increasing field strength the ground state evolves into the two S z = - 1 configurations 1s 22s2p -1 and 1s 22p -13d -2, followed by the fully spin polarised S z = - 2 configuration 1s2p -13d -24f -3. The latter configuration forms the ground state of the beryllium atom in the high field regime γ > 4.567. The analogous calculations for the Be + ion provide the sequence of the three following ground state configurations: 1s22s and 1s 22p -1 (S z = - 1/2) and 1s2p -13d -2 (S z = - 3/2). Received 2 October 2000 and Received in final form 8 January 2001  相似文献   

7.
The known level energies, electromagnetic moments and decay probabilities of high-spin states in the N = 46 isotones 86Zr, 87Nb, 88Mo, 89Tc, and 90Ru are interpreted within the shell model. The single-particle space was truncated to the p 1/2 and g 9/2 orbits (relative to the 88Sr core) and the single-particle energies and empirical two-body matrix elements derived by Gross and Frenkel were used in the calculations. Based on the generally good success of this approach, energies and decay properties of the yrast spectra in 90Ru and 91Rh are predicted. Received: 31 July 2000 / Accepted: 18 December 2000  相似文献   

8.
In this work, the multiplet splitting in terms of a spin-dependent model is analyzed. The spin-polarized and unpolarized single configuration Dirac-Fock-Slater wavefunctions have been used in the evaluation of the total energies of highly ionized argon with different L shell population The transition energies of hollow argon atom with initial configurations 1s 0 1/22s m 1/22p n 1/22p l 3/2 with m = 0 to 2 and n + l varying from 6 to 1 are reported in this work. The calculations have been carried out by taking into account a relativistic exchange potential in the Dirac-Slater potential. To account for the correlation effects, a correction term has also been considered perturbatively. The present calculations show that the spin-polarized technique which is mainly applied to the ground states of atoms may also be applied to atoms ionized in the inner shells with a good degree of accuracy. Received 5 December 2000 and Received in final form 9 April 2001  相似文献   

9.
The effect of electrostatic interactions on the stretching of DNA is investigated using a simple worm like chain model. In the limit of small force there are large conformational fluctuations which are treated using a self-consistent variational approach. For small values of the external force f, we find the extension scales as where is the Debye screening length. In the limit of large force the electrostatic effects can be accounted for within the semiflexible chain model of DNA by assuming that only small excursions from rod-like conformations are possible. In this regime the extension approaches the contour length as where f is the magnitude of the external force. The theory is used to analyze experiments that have measured the extension of double-stranded DNA subject to tension at various salt concentrations. The theory reproduces nearly quantitatively the elastic response of DNA at small and large values of f and for all concentration of the monovalent counterions. The limitations of the theory are also pointed out. Received 13 October 1998 and Received in final form 9 June 1999  相似文献   

10.
The isospin dependence of shell closure phenomena is studied for light neutron-rich nuclei within a microscopic self-consistent approach using the Gogny force. Introducing configuration mixing, 32Mg is found to be dynamically deformed, although the N = 20 spherical shell closure persists at the mean-field level for all N = 20 isotones. In contrast, the N = 28 spherical shell closure is found to disappear for N - Z≥ 10 whereas deformed shell closures are preserved and lead to shape coexistence in 44 S. Configuration mixing shows that the ground state of this nucleus is triaxially deformed. The first 2+ excitation energy Ex = 1.46 MeV and the reduced transition probability B(E2;0+ gs→ 2+ 1)= 420 e 2 fm 4 obtained with our approach are in good agreement with experimental data. Received: 26 July 2000 / Accepted: 30 August 2000  相似文献   

11.
12.
We show that the spin-orbit potential of the nuclear mean field destroys isoscalar superfluid correlations in self-conjugate nuclei. Using group theory and boson mapping techniques on a Hamiltonian including single particle splittings and a SO ST(8) pairing interaction, we give analytical expressions for the spin-orbit dependence of some N = Z properties such as the relative position of T = 0 and T = 1 states in odd-odd systems or double binding-energy differences of even-even nuclei. Received: 12 April 2000 / Accepted: 25 May 2000  相似文献   

13.
The theory of light scattering for a system of linear molecules with anisotropic polarizabilities is considered. As a starting point for our theory, we express the result of a scattering experiment in VV and VH symmetry as dynamic correlation functions of tensorial densities ρ lm(q) with l = 0 and l = 2. l, m denote indices of spherical harmonics. To account for all observed hydrodynamic singularities, a generalization of the theory of Schilling and Scheidsteger [1] for these correlation functions is presented, which is capable to describe the light scattering experiments from the liquid regime to the glassy state. As a microscopic theory it fulfills all sum rules contrary to previous phenomenological theories. We emphasize the importance of the helicity index m for the microscopic theory by showing, that only the existence of m = 1 components lead to the well known Rytov dip in liquids and to the appearance of transversal sound waves in VH symmetry in the deeply supercooled liquid and the glass. Exact expressions for the phenomenological frequency dependent rotation translation coupling coefficients of previous theories are derived. Received 3 July 2000 and Received in final form 7 November 2000  相似文献   

14.
A fireball model with time evolution based on transport calculations is used to examine the dilepton emission rate of an ultra-relativistic heavy-ion collision. A transition from hadronic matter to a quark-gluon plasma at a critical temperature T C between 130-170 MeV is assumed. We also consider a possible mixed phase scenario. We include thermal corrections to the hadronic spectra below T C and use perturbation theory above T C. The sensitivity of the spectra with respect to the freeze-out temperature, the initial fireball temperature and the critical temperature is investigated. Received: 4 August 2000 / Accepted: 14 November 2000  相似文献   

15.
Non-orthogonal tight-binding molecular-dynamics is employed to calculate structural and vibrational properties of C36 and its oligomers (C36) M = 2, 3, 4 . The lowest energy configuration of the C 36 cage is confirmed to have D 6h symmetry. For the dimer, too, the D 2h structure reported in the literature is found. The vibrational spectrum is identified with the power spectrum of the displacement autocorrelation function. Additional vibrational properties are extracted from the dynamical matrix. For the monomer, fair agreement with available ab initio calculations is achieved, with comparatively smaller deviations in the Raman-frequencies than for published semi-empirical calculations. The features of the vibrational modes are correlated with the structural properties of the oligomers. Received 24 November 2000 and Received in final form 24 August 2001  相似文献   

16.
Determination of the helium-4 mass in a Penning trap   总被引:2,自引:0,他引:2  
The determination of the rotational quadrupole alignment of diatomic molecules via REMPI detection is investigated. In this process a high focal intensity usually increases the detection probability. At high intensities the AC Stark effect may cause a splitting of the normally degenerate mJ sublevels of a rotational state J beyond the spectral width of the exciting radiation. This leads to a selective detection of only certain mJ states with the consequence that deduced alignment factors can be misleading. From the theoretical considerations line profiles are explicitly calculated for dynamic polarizabilities which represent the B 1Σ+ uX 1Σ+ g transition of H2, in order to fit an experimental (3+1) REMPI spectrum and to predict (1+1') line shapes as a function of laser intensity. It is further shown that the deduced quadrupole alignment factor A 0 (2) is significantly changed by the second order AC Stark effect when the intensities are chosen high enough to observe asymmetric broadened line profiles. Different combinations of relative linear polarizations of the exciting and ionizing laser beams are discussed. Received 1st August 2000 and Received in final form 2 May 2001  相似文献   

17.
By analysis of fission product γ-ray data measured at Eurogam II using a 248Cm source, yrast levels up to about 2 MeV in the N=84 three-particle nucleus 135Sb have been identified. These levels are interpreted as π g7/2ν f7/2 2 and π g7/2ν f7/2h9/2 states with the help of shell model calculations using empirical nucleon-nucleon interactions. Received: 30 July 1998  相似文献   

18.
Based on a phenomenologically successful effective chiral theory of pseudoscalar, vector, and axial-vector mesons, all the coefficients of the chiral perturbation theory are predicted. There is no new adjustable parameter in these predictions. Up to O(m 2 q) the formulas of the masses of the pseudoscalar mesons are the same as the ones obtained by ChPT. Received: 31 August 2000 / Accepted: 16 March 2001  相似文献   

19.
We study theoretically the effect of impurity scattering in f-wave (or E2u) superconductors. The quasi-particle density of states of f-wave superconductor is very similar to the one for d-wave superconductor as in hole-doped high T c cuprates. Also in spite of anisotropy in Δ( ), both the reduced superfluid density and the reduced electronic thermal conductivity is completely isotropic. Received 11 October 2000  相似文献   

20.
Theory of magnetoquantum oscillations with spin-split structure in strongly anisotropic (two-dimensional (2D)) metal is developed in the formalism of level approach. Parametric method for exact calculation of oscillations wave forms and amplitudes, developed earlier for spin degenerate levels is generalized on a 2D electron system with spin-split levels. General results are proved: 1) proportionality relation between magnetization and chemical potential oscillations accounting for spin-split energy levels and magnetic field unperturbed levels (states of reservoir), 2) basic equation for chemical potential oscillations invariant to various models of 2D and 1D energy bands (intersecting or overlapping) and localized states. Equilibrium transfer of carriers between overlapping 2D and 1D bands, characterizing the band structure of organic quasi 2D metals, is considered. Transfer parameter, calculated in this model to be of the order of unity, confirms the fact that the wave form of oscillations in organic metals should be quasisymmetric up to ultralow temperature. Presented theory accounts for spin-split magnetization oscillations at magnetic field directions tilted relative to the anisotropic axis of a metal. Theoretical results are compared with available experimental data on organic quasi-2D metal α-(BEDT-TTF)2KHg(SNC)4 explaining the appearance of clear split structure under the kink magnetic field and absence above by the corresponding change in the electron g-factor rather than cyclotron mass. Received 20 December 2000 and Received in final form 13 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号