首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A kinetic method for the identification of primary reactions in sensitized photooxidations is described. It is based on the calculation of Fractions of primary reactions of triplet sensitizer (3S) and singlet oxygen (1O2) as a function of substrate concentration (A) and on the comparison of experimental and theoretical curves. The theoretical curve that coincides with the experimental one indicates the mechanism of the chemical change observed. Only the quenching rate constants of 3S and 1O2 are needed for this calculation. The method enables one to distinguish the free radical and 1O2 mechanism. Applications of the method with 3-indole acetic acid, 1-histidine and N-3 using phenosafranine as the sensitizing dye (aqueous solutions, pH 7.C7.2) are described. The chemical change followed in these experiments is the bleaching of p-nitrosodimethylaniline (RNO) which gives precise and reproducible results. The bleaching of RNO is induced by the presence of some substrates which produce reactive intermediates with an oxidizing character. The kinetic method can be applied to any chemical change observed in different systems of sensitized photooxidations. The quantum yield of 3S and 1O2 formation need not be known.  相似文献   

2.
Both silica glass materials singly doped with rare earth organic complex and co-doped with Al^3 were prepared by in situ sol-gel method respectively. XRD and SEM measurements were performed to verify the non-crystalline structure of the glass. The excitation spectra, emission spectra and IR spectra were measured to analyze the influence of the glass contents on the structure of the glass and the energy level of the doped Eu(IH) ions. The effect of Al^3 on the photoluminescence properties of rare earth organic complex in silica glass was investigated. The IR spectra indicated that the in situ synthesized europium complex molecule was confined to the micropores of the host and the vibration of the ligands was frozen. When Al2O3 was doped into the silica host gel, the rare earth ions in the silica network were wrapped up and dispersed by Al2O3, so the distribution of Eu(Ⅲ) complex in the host was morehomogeneous, and the luminescence intensity of ^5D0-^7F2 transition emission of the Eu^3 ions was improved. The results showed that an appropriate amount of Al^3 added to the gel glass improved the emission intensity of the complex in the silica glass, and when the content of Al2O3 reached 4 mol%, the maximum emission intensity could be obtained compared with that of other samples containing different Al2O3 contents.  相似文献   

3.
Density functional theory (DFT) was employed at the B3LYP/6‐31+G* level to study complexes of 1O2 and 3O2 with the dye molecules proflavine, methylene blue, and acridine orange, which are useful in photodynamic therapy. It was found that the most stable complex between 1O2 and proflavine are formed when 1O2 is located above the central ring, while the most stable complex between 1O2 and methylene blue is formed when 1O2 is located above the molecular plane, but not above any of the rings, near the sulfur atom. 1O2 can make a stable complex with acridine orange, as it is located above the outer ring of the dye. The binding energies of the complexes of 1O2 with all three dyes are enhanced considerably in going from gas phase to aqueous media. The complexes of 3O2 with the dyes will be unstable in all cases, while those of 1O2 with the same will be quite stable and will not be dissociated due to thermal fluctuations at room temperature. In the complexes of 1O2 and 3O2 with the dyes, charge transfer occurs from the dyes to the O2 moiety, the amount of charge transfer being much more to 1O2 than to 3O2 in each case. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

4.
Characteristic temperatures, such as T g (glass transition), T x (crystallization temperature) and T l (liquidus temperature) of glasses from the V2O5-MoO3-Bi2O3 system were determined by means of differential thermal analysis (DTA). The higher content of MoO3 improved the thermal stability of the glasses as well as the glass forming ability. The non-isothermal crystallization was investigated and following energies of the crystal growth were obtained: glass #1 (80V2O5·20Bi2O3) E G=280 kJ mol-1, glass #2 (40V2O5·30MoO3·30Bi2O3) E G=422 kJ mol-1 and glass #3 (80MoO3·10V2O5·10Bi2O3) E G=305 kJ mol-1. The crystallization mechanism of glass #1 (n=3) is bulk, of glass #3 (n=1) is surface. Bulk and surface crystallization was supposed in glass #2. The presence of high content of a vanadium oxide acts as a nucleation agent and facilitates bulk crystallization. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Anthraquinone (AQ) redox mediators are introduced to metal-free organic dye sensitized photo-electrochemical cells (DSPECs) for the generation of H2O2. Instead of directly reducing O2 to produce H2O2, visible-light-driven AQ reduction occurs in the DSPEC and the following autooxidation with O2 allows H2O2 accumulation and AQ regeneration. In an aqueous electrolyte, under 1 sun conditions, a water-soluble AQ salt is employed with the highest photocurrent of up to 0.4 mA cm−2 and near-quantitative faradaic efficiency for producing H2O2. In a non-aqueous electrolyte, under 1 sun illumination, an organic-soluble AQ is applied and the photocurrent reaches 1.8 mA cm−2 with faradaic efficiency up to 95 % for H2O2 production. This AQ-relay DSPEC exhibits the highest photocurrent so far in non-aqueous electrolytes for H2O2 production and excellent acid stability in aqueous electrolytes, thus providing a practical and efficient strategy for visible-light-driven H2O2 production.  相似文献   

6.
The known O2(1?g)‐sensitizer system Chitosan bounded Rose Bengal (CH‐RB), with Rose Bengal (RB) immobilized by irreversible covalent bonding to the polymer Chitosan (CH), soluble in aquous acidic medium, was employed in the photodegradation of three tri‐hydroxy benzene water‐contaminants (THBs). The system sensitizes the O2(1?g)‐mediated photodegradation of THBs by a process kinetically favored, as compared to that employing free RB dissolved in the same solvent. Additionally the free xanthene dye, degradable by O2(1?g) through self‐sensitization upon prolonged light‐exposure, is considerably protected when bonded to CH‐polymer. The polymeric sensitizer, totally insoluble in neutral medium, can be removed from the solution after the photodegradative cycle by precipitation through a simple pH change. This fact constitutes an interesting aspect in the context of photoremediation of confined polluted waters. In other words, the sensitizing system could be useful for avoiding to dissolve dyestuffs in the polluted waters, in order to act as conventional sunlight‐absorbing dye‐sensitizers. In parallel the interaction CH ‐ O2(1?g) in acidic solution was evaluated. The polymer quenches the oxidative species with a rate constant 2.4 × 108 M?1 s?1 being the process mostly attributable to a physical interaction. This fact promotes the photoprotection of the bonded dye in the CH‐RB polymer.  相似文献   

7.
Singlet oxygen (1O2) is the excited state of ground, triplet state, molecular oxygen (O2). Photosensitized 1O2 has been extensively studied as one of the reactive oxygen species (ROS), responsible for damage of cellular components (protein, DNA, lipids). On the other hand, its generation has been exploited in organic synthesis, as well as in photodynamic therapy for the treatment of various forms of cancer. The aim of this review is to highlight the versatility of 1O2, discussing the main bioorganic applications reported over the past decades, which rely on its production. After a brief introduction on the photosensitized production of 1O2, we will describe the main aspects involving the biologically relevant damage that can accompany an uncontrolled, aspecific generation of this ROS. We then discuss in more detail a series of biological applications featuring 1O2 generation, including protein and DNA labelling, cross-linking and biosensing. Finally, we will highlight the methodologies available to tailor 1O2 generation, in order to accomplish the proposed bioorganic transformations while avoiding, at the same time, collateral damage related to an untamed production of this reactive species.  相似文献   

8.
On the basis of the mineral banalsit (BaNa2Al4Si4O16) and the addition of small B2O3 concentrations, transparent glasses were prepared. Furthermore, in order to achieve nucleation, LiF and CaF2 were added. Hexacelsian was formed in bulk crystallized glass samples whereas, monocelsian, as well as small quantities of nepheline and banalsite were crystallized from sintered glass powder. The scanning electron micrographs of the sintered samples show high crystallinity and crystals with sizes from nano to micrometers. The SEM micrographs and the EDX microanalyses show that nano size rods of monocelsian surrounded by micrometer-sized hexagonal nepheline, banalsite or residual glassy phase occur. The coefficient of thermal expansion of the samples sintered at 1000 °C was higher (12.93–9.52 × 10−6 K−1) in hexacelsian containing samples than in monocelsian (2.24–7.35 × 10−6 K−1) containing ones. The samples also showed notably different densities of 2.6424 and 2.4718 g/cm3, respectively.  相似文献   

9.
Abstract

Fe3O4@SiO2@NH2 nanocomposite was prepared for highly effective adsorption of two anionic dyes one of which is triarylmethane dye (light green, LG) and the other is azo dye (brilliant yellow, BY). The characterization results demonstrated that superparamagnetic Fe3O4 nanoparticles were covered with silica and functionalized with amino groups successfully without losing magnetic character. The effects of adsorbent dosage, contact time, pH, temperature, and dye molecular structure on the adsorption were investigated. Acidic pH was better for both LG and BY, on the other hand, alkaline pH was favorable to some extent for LG in comparison with BY due to the contribution of stacking effect in addition to electrostatic attraction. Kinetic data demonstrated that the driving force for adsorption process could be explained by pseudo-second order mechanism in both systems. The equilibrium data were more compatible with Langmuir isotherm than those of Freundlich isotherm and the maximum adsorption capacities of Fe3O4@SiO2@NH2 calculated from Langmuir isotherm model for LG and BY at 30?°C and natural pH of the solution were 40.2 and 35.5?mg g?1. Thermodynamic calculations related to temperature dependence demonstrated that the adsorption process was spontaneous and exothermic.  相似文献   

10.
The specifics of photo-and thermogeneration of singlet molecular oxygen by metal oxides deposited on silica gel and Al2O3 were studied. The deposited oxides were observed to generate equilibrium and superequilibrium concentrations of 1ΔgO2. The V2O5/SiO2 and MoO3/SiO2 systems were found to be most active in both types of generation. A common mechanism of photo-and thermogeneration was proposed.  相似文献   

11.
This paper assesses the adsorption characteristics of Titan yellow and Congo red on CoFe2O4 magnetic nanoparticles. The adsorption behavior of Titan yellow and Congo red from aqueous solution onto CoFe2O4 magnetic nanoparticles has been determined by investigating the effects of pH, concentration of the dye, amount of adsorbent, contact time, ionic strength and temperature. Experimental results indicated that CoFe2O4 nanoparticles can remove more than 98 % of each dye under optimum operational conditions of a dosage of 15.0 mg CoFe2O4, pH 3.0, initial dye concentration of 22–140 mg L?1, and contact times of 2.0 and 15.0 min for Congo red and Titan yellow, respectively. Langmuir and Freundlich isotherm models have been used to evaluate the ongoing adsorption kinetic equations. Regeneration of the saturated adsorbent was possible by NaCl/acetone solution as eluent. The maximum adsorption capacities were 200.0 and 212.8 mg dye per gram adsorbent for Congo red and Titan yellow, respectively. With the help of adsorption isotherm, thermodynamic parameters such as free energy, enthalpy and entropy have been calculated. On the basis of pseudo-first-order and pseudo-second-order kinetic equations, different kinetic parameters have been obtained.  相似文献   

12.
The early stages of crystallization for MgO-Al2O3-SiO2-TiO2-La2O3 glasses with different La2O3 concentrations were studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The glass transition temperature (Tg) of the glass decreases at first and then increases again with increasing La2O3 concentration. This indicates that the structure of the glass becomes weaker at first and then stronger again. Lanthanum acts in glasses as network modifier and will usually decrease the network connectivity of the glass structure. Nevertheless, if the La2O3 concentration is high enough, the oxygen and other ions start to agglomerate around La, resulting in a more closely packed structure. Heat-treatment of the sample with x = 0.1 at 770–810 °C results in the precipitation of a droplet phase with higher mean atomic weight embedded in a matrix with lower mean atomic weight. The initial crystalline phase magnesium aluminum titanate (MAT) precipitates from the droplet phase. Nevertheless, for the sample with x = 0.4, dendrite-like structure could be observed after heat-treatment of the glass at 810 °C. Furthermore, the crystalline phase first precipitated is the lanthanum containing perrierite, which could be attributed to the rearrangement of the glass structure as an effect of La3+ incorporation.  相似文献   

13.
In this study, 20Li2O-60V2O5-(20 − x)B2O3-xBi2O3 (x = 5, 7.5, 10 mol%) glass materials have been prepared by the melt-quenching method, and the structure and morphology of the glass materials have been characterized by XRD, FTIR, Raman, and FE-SEM. The results show that the disordered network of the glass is mainly composed of structural motifs, such as VO4, BO3, BiO3, and BiO6. The electrochemical properties of the glass cathode material have been investigated by the galvanostatic charge-discharge method and cyclic voltammetry, and the results show that with the increases of Bi2O3 molar content, the amount of the VO4 group increases, and the network structure of the glass becomes more stable. To further enhance the electrochemical properties, glass-ceramic materials have been obtained by heat treatment, and the effect of the heat treatment temperature on the structure and electrochemical properties of the glass has been studied. The results show that the initial discharge capacity of the glass-ceramic cathode obtained by heat treatment at 280 °C at a current density of 50 mA·g−1 is 333.4 mAh·g−1. In addition, after several cycles of charging and discharging at a high current density of 1000 mA·g−1 and then 10 cycles at 50 mA·g−1, its discharge capacity remains at approximately 300 mAh·g−1 with a capacity retention rate of approximately 90.0%. The results indicate that a proper heat treatment temperature is crucial to improving the electrochemical properties of glass materials. This study provides an approach for the development of new glass cathode materials for lithium-ion batteries.  相似文献   

14.
Pr4S3[Si2O7] and Pr3Cl3[Si2O7]: Derivatives of Praseodymium Disilicate Modified by Soft Foreign Anions For synthesizing both the disilicate derivatives Pr4S3[Si2O7] and Pr3Cl3[Si2O7], Pr, Pr6O11 and SiO2 are brought to reaction with S and PrCl3, respectively, in suitable molar ratios (850 °C, 7 d) in evacuated silica tubes. By using NaCl as a flux, Pr4S3[Si2O7] crystallizes as pale green, transparent single crystals (tetragonal, I41/amd, a = 1201.6(1), c = 1412.0(2) pm, Z = 8) with the appearance of slightly compressed octahedra. On the other hand, Pr3Cl3[Si2O7] emerges as pale green, transparent platelets and crystallizes monoclinically (space group: P21, a = 530.96(6), b = 1200.2(1), c = 783.11(8) pm, β = 109.07(1)°, Z = 2). In both crystal structures ecliptically conformed [Si2O7]6– units of two corner‐linked [SiO4] tetrahedra with Si–O–Si bridging angles of 131° in the sulfide and 148° in the chloride disilicate are present. In Pr4S3[Si2O7] both crystallographically independent Pr3+ cations show coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) and 9 (3 S2– and 6 O2–). For Pr1, Pr2 and Pr3 in Pr3Cl3[Si2O7] coordination numbers of 10 (5 Cl and 5 O2–) and 9 (2 ×; 4 Cl and 5 O2– or 3 Cl and 6 O2–, respectively) occur.  相似文献   

15.
This study investigated the visible-light catalysis mediated by zeolite NaY on the oxidation of dyes with H2O2. The results demonstrated that zeolite NaY acts as a sink for the electron from the photo-excited dye in the heterogeneous catalysis. Furthermore, the electron can effectively activate H2O2 to produce ·OH radical that is a powerful oxidant for the oxidation of dye at room temperature. The effects of the framework topology, Si/Al ratio, and exchangeable cation of the zeolite on the oxidation of various dyes were also shown.  相似文献   

16.
In the present work, mechanism of the O2(1Δg) generation from the reaction of the dissolved Cl2 with H2O2 in basic aqueous solution has been explored by the combined ab initio calculation and nonadiabatic dynamics simulation, together with different solvent models. Three possible pathways have been determined for the O2(1Δg) generation, but two of them are sequentially downhill processes until formation of the OOCl complex with water, which are of high exothermic character. Once the complex is formed, singlet molecular oxygen is easily generated by its decomposition along the singlet-state pathway. However, triplet molecular oxygen of O2() can be produced with considerable probability through nonadiabatic intersystem crossing in the 1Δg/ intersection region. It has been found that the coupled solvent, heavy-atom, and nonadiabatic effects have an important influence on the quantum yield of the O2(1Δg) generation. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
ESR investigations of the reaction between (bipy)Ni(C2H5)2 and aromatic nitroso compounds (RNO) show the formation of paramagnetic, unstable complexes containing the radical RNO. which is followed by elimination of nitroxide radicals C2H5(R)NO..(bipy)Ni(COD) is oxidized by RNO to give nickel(I) species and several trapped radicals derived from COD. In the presence of aldehydes no paramagnetic nickel species, but ethyl radicals and spin adducts of the aldehydes can be observed. The mechanism of the reaction is discussed.  相似文献   

18.
The quantum yield of intersystem crossing (Φisc) of a sensitizer is related to the quantum yield of singlet-oxygen production (Φ(1O2)) by the efficiency of the energy transfer (φet) and is an important parameter in the evaluation of potential applications of sensitized photo-oxidations. Using two different laser photolysis techniques, the energy-transfer method and the partial saturation method, Φisc of rose bengal has been determined in MeOH and in aqueous solutions. The results confirm that with Φisc(H2O) = 1.05(± 0.06) and Φisc(MeOH)=0.90(±0.08), the generally assumed relation Φisc · φet = Φ(1O2), with φet = 1, cannot be maintained any longer (Φ(1O2, H2O) = 0.75 and Φ(1O2, MeOH) = 0.76). During these experiments, a second intermediate has been observed which is produced from the triplet state of rose bengal and, stabilized in a anionic micellar solution, has been shown to be the radical cation of the sensitizer. The efficiency of the electron transfer has been evaluated from transient absorption and bleaching recordings, and it seems conclusive to attribute the results to the difference between Φisc and Φ(1O2).  相似文献   

19.
Anthraquinone (AQ) redox mediators are introduced to metal‐free organic dye sensitized photo‐electrochemical cells (DSPECs) for the generation of H2O2. Instead of directly reducing O2 to produce H2O2, visible‐light‐driven AQ reduction occurs in the DSPEC and the following autooxidation with O2 allows H2O2 accumulation and AQ regeneration. In an aqueous electrolyte, under 1 sun conditions, a water‐soluble AQ salt is employed with the highest photocurrent of up to 0.4 mA cm?2 and near‐quantitative faradaic efficiency for producing H2O2. In a non‐aqueous electrolyte, under 1 sun illumination, an organic‐soluble AQ is applied and the photocurrent reaches 1.8 mA cm?2 with faradaic efficiency up to 95 % for H2O2 production. This AQ‐relay DSPEC exhibits the highest photocurrent so far in non‐aqueous electrolytes for H2O2 production and excellent acid stability in aqueous electrolytes, thus providing a practical and efficient strategy for visible‐light‐driven H2O2 production.  相似文献   

20.
Resonance Raman scattering has been observed from metastable O2 molecules produced in single crystals of NaClO3 by γ-irradiation at 300 K. Evidence that the observed bands are due to O2 is provided by the Raman spectrum of irradiated 18O enriched NaClO3 in which bands due to 16O2, 16O 18O, and 18O2 were identified. The Raman band at 1544 cm?1 ascribed to metastable O2 disappears on bleaching with intense 4880 Å radiation enabling the identification of a weaker band at 1557 cm?1 that is assigned to the stable form of O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号