首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular modeling demonstrates that the first excited state of the triplet ketone (T1K) in azide 1b has a (pi,pi*) configuration with an energy that is 66 kcal/mol above its ground state and its second excited state (T2K) is 10 kcal/mol higher in energy and has a (n,pi*) configuration. In comparison, T1K and T2K of azide 1a are almost degenerate at 74 and 77 kcal/mol above the ground state with a (n,pi*) and (pi,pi*) configuration, respectively. Laser flash photolysis (308 nm) of azide 1b in methanol yields a transient absorption (lambdamax=450 nm) due to formation of T1K, which decays with a rate of 2.1 x 105 s-1 to form triplet alkylnitrene 2b (lambdamax=320 nm). The lifetime of nitrene 2b was measured to be 16 ms. In contrast, laser flash photolysis (308 nm) of azide 1a produced transient absorption spectra due to formation of nitrene 2a (lambdamax=320 nm) and benzoyl radical 3a (lambdamax=370 nm). The decay of 3a is 2 x 105 s-1 in methanol, whereas nitrene 2a decays with a rate of approximately 91 s-1. Thus, T1K (pi,pi*) in azide 1b leads to energy transfer to form nitrene 2b; however, alpha-cleavage is not observed since the energy of T2K (n,pi*) is 10 kcal/mol higher in energy than T1K, and therefore, T2K is not populated. In azide 1a both alpha-cleavage and energy transfer are observed from T1K (n,pi*) and T2K (pi,pi*), respectively, since these triplet states are almost degenerate. Photolysis of azide 1a yields mainly product 4, which must arise from recombination of benzoyl radicals 3a with nitrenes 2a. However, products studies for azide 1b also yield 4b as the major product, even though laser flash photolysis of azide 1b does not indicate formation of benzoyl radical 3b. Thus, we hypothesize that benzoyl radicals 3 can also be formed from nitrenes 2. More specifically, nitrene 2 does undergo alpha-photocleavage to form benzoyl radicals and iminyl radicals. The secondary photolysis of nitrenes 2 is further supported with molecular modeling and product studies.  相似文献   

2.
Phosphinoyl radicals were produced in benzene solution by photolysis of three acylphosphine oxide photoinitiators, diphenyl-2,4,6-trimethylbenzoyl phosphine oxide (I), bis(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) phosphine oxide (II), and bis(2,4,6-trimethylbenzoyl) phenylphospine oxide (III). The chemically induced dynamic electron polarization (CIDEP) of the radicals was measured by time-resolved electron paramagnetic resonance spectroscopy at different microwave frequencies/magnetic fields, in S- (2.8 GHz, 0.1 T), X- (9.7 GHz, 0.34 T), Q- (34.8 GHz, 1.2 T), and W-bands (95 GHz, 3.4 T). The CIDEP was found to be due to a triplet mechanism (TM) superimposed by a radical pair mechanism comprising ST(0) as well as ST(-) mixing. Contributions of the different CIDEP mechanisms were separated, and the dependence of the TM polarization on microwave frequency was determined. It agrees well with the numerical solution of the relevant stochastic Liouville equation, which proves the TM theory quantitatively. The applicability of previous approximate analytical formulas for the TM polarization is discussed. Parameters of the excited triplet state of III were estimated from the dependence of the TM polarization on microwave frequency. They are zero-field splitting constant 0.169 cm(-1) 相似文献   

3.
The novel laser jet technique provides sufficiently high photon densities to permit the observation of the photochemistry of photochemically generated radicals (two-photon chemistry) in the liquid phase. Four recent applications of this novel photochemically useful method are presented: these include the photochemistry of hydroxydiphenylmethyl, 9-hydroxyxanthenyl, diphenylmethyl, and benzoyl radicals under laser jet and normal photolysis conditions.

The regioselectivity of cross-coupling reactions of hydroxydiphenylmethyl or 9-hydroxyxanthenyl radicals with solvent-derived radicals changes when these species are electronically excited,i.e. under the high intensity conditions of the laser jet, cross-coupling at the para position (head-to-tail combination) is significantly enhanced relative to the normal coupling mode at the hydroxy-bearing radical site (head-to-head combination). Semiempirical calculations of the spin density distributions for the ground and first excited states of the radicals confirm the change in spin density from the hydroxy-bearing carbon atom to the conjugating benzene rings in these radical species on photoexcitation.

For the diphenylmethyl radical, two reaction pathways have been observed under the high photon densities of the laser jet: the electronically excited diphenylmethyl radical can either abstract a chlorine atom from carbon tetrachloride through an electron transfer process or can be photoionized on further photoexcitation (multiphoton chemistry). The resulting benzhydryl cation was trapped by methanol as the corresponding ether product, which unequivocally demonstrates that carbene formation by photoejection of a hydrogen atom does not take place under laser jet photolysis conditions.

An advantage of the high photon densities produced in laser jet photolysis is the high steady state concentration of short-lived transients that are generated, which enable unprecedented intermolecular reactions to be observed. Thus, about a millimolar concentration of tert-butoxy radicals can be obtained in the laser jet photocleavage of tert-butyl peroxide. When the tert-butoxy radicals are produced in the presence of benzaldehyde, the main product is tert-butyl benzoate. If carbon tetrachloride is also present, chlorobenzene can be detected. This is rationalized as the product derived from chlorine abstraction by phenyl radicals, which are presumably produced by the photodecarbonylation of benzoyl radicals.

An alternative method of obtaining benzoyl radicals is the two-photon cleavage of benzil. The laser jet photolysis of benzil in tert-butyl peroxide yields mainly tert-butyl benzoate, whereas in carbon tetrachloride, benzoyl chloride, chlorobenzene and ,,-trichloroacetophenone are observed. The first two products result from chlorine atom abstraction by the photochemically generated benzoyl and phenyl radicals, and the last product from in-cage cross-coupling between benzoyl and trichloromethyl radicals.

Such product studies provide detailed mechanistic information on the photochemical behaviour of electronically excited, short-lived transients which complements nicely the kinetic and spectral data of time-resolved laser flash studies. Consequently, the laser jet technique constitutes a valuable tool for determining the mechanism of two- photon reactions.  相似文献   


4.
Solid-state photolysis of 1 yields 2 in a crystal-to-crystal reaction. The reaction takes place by alpha-cleavage to form a benzoyl and an azido alkyl radical pair. The azido alkyl radicals rearrange into iminyl radicals and N2. The iminyl and benzoyl radicals are held in close proximity within the crystal lattice, which allows them to combine and form 2. X-ray structure analysis, molecular modeling and trapping studies support this mechanism.  相似文献   

5.
This study examines the polymerization of dental monomers catalyzed by synthesized acylphosphine oxides in a differential scanning calorimetry (DSC) cell. This research focuses on establishing a relationship between radicals generated by the acylphosphine oxide photoinitiators and the kinetic reaction rates of methyl methacrylate (MMA) and acrylamide (ACM), a model monomer. The thermal stability of mono- and di-acylphosphine oxides was examined by DSC. Endothermic melting and exothermic polymerization reactions initiated with the two initiators were recorded. The acrylamide model system laid the ground work for the critical evaluation of the synthesized new initiators of mono (2,4,6-trimethylbenzoyl) diphenylphosphine oxide, and bis(2,4,6-trimethylbenzoyl) phenylphosphine oxide. The bis(acyl) phosphine oxide photoinitiator was more reactive than the mono-(acyl) phosphine oxide with methyl methacrylates under laboratory conditions. In exothermic reactions, temperatures rose higher and more rapidly for bis(acyl) phosphine oxide initiated reactions than mono-(acyl) phosphine oxide initiated reactions.  相似文献   

6.
The photooxidation of 2'-deoxyguanosine (dG) and its derivative 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) by a series of acetophenones (AP-X) and benzophenone (BP) has been studied.The favorable absorption characteristics of the benzoyl chromophore enables time-resolved spectroscopy of the triplet ketones to assess their quenching kinetics by dG and 8-oxodG. Whereas the photolysis of acetophenone (AP), 2-acetoxyacetophenone (AP-OAc), and benzophenone (BP) does not produce radicals (group A ketones), the oxymethyl-substituted derivatives 2-hydroxyacetophenone (AP-OH) and 2-tert-butoxyacetophenone (AP-O(t)Bu) lead to carbon-centered radicals by alpha cleavage (group B ketones). For the latter ketones, this was confirmed by EPR studies with the spin trap 5,5-dimethylpyrroline N-oxide (DMPO) and by their triplet lifetimes that were shorter than those for the unsubstituted acetophenone. Both groups of ketones photooxidize dG and 8-oxodG; the oxidation products are spiroiminodihydantoin and guanidine-releasing products (GRP) in the case of dG and AP-OH also 8-oxodG. In the presence of O(2), the photooxidation by the group A ketones is efficient at high dG or 8-oxodG concentrations, whereas the group B ketones photooxidize dG and 8-oxodG also at low substrate concentrations. These results imply that peroxyl radicals are responsible for the photooxidation by the group B ketones, which are formed by alpha cleavage of the triplet ketone and subsequent O(2) trapping of the carbon-centered radicals. At higher dG concentrations, direct electron transfer from dG to the triplet ketone, as observed for the group A ketones, competes with the radical activity.  相似文献   

7.
The photolysis of isomeric pairs of p,p'-dialkyl-substituted phenyl benzyl ketones adsorbed on MFI zeolites has been investigated by EPR spectroscopy. Photolysis produces persistent "benzoyl type" and "benzyl type" radicals. The dominant persistent radical produced by photolysis of any particular isomeric pair depends on the length and position of the p-alkyl chain. The results are attributed to supramolecular stereoisomers resulting from preferential adsorption of the longer alkyl chain into the pores of the zeolite.  相似文献   

8.
[reaction: see text] Although some aspects of azoxy group radical chemistry have been investigated, unhindered alpha-azoxy radicals remain poorly understood. Here we report the generation of alpha-azoxy radicals under mild conditions by irradiation of alpha-azoxy ketones 4a,b. These compounds undergo alpha-cleavage to yield radicals 5a,b, whose oxygen atom then recombines with benzoyl radicals to produce presumed intermediate 15. Formal Claisen rearrangement gives alpha-benzoyloxyazo compounds 8a,b, which are themselves photolabile, leading to both radical and ionic decomposition. The ESR spectrum of 5a was simulated to extract the isotropic hyperfine splitting constants, which showed its resonance stabilization energy to be exceptionally large. Azoxy compounds have been found for the first time to be good quenchers of triplet excited acetophenone, the main sensitized photoreaction of 7Z in benzene being deoxygenation. While this reaction has been reported previously, it was always in hydrogen atom donating solvents, where chemical sensitization occurred. The principal direct irradiation product of 4bZ and model azoxyalkane 7Z is the E isomer, whose thermal reversion to Z is much faster than that of previously studied analogues.  相似文献   

9.
The selenocysteinyl radical 1 has been generated for the first time by laser flash photolysis (lambda(exc) = 266 nm) of dimethyl bis(N-tert-butoxycarbonyl)-l-selenocystine 2 and of [(9-fluorenylideneamino)oxycarbonyl]methyl(N-tert-butoxycarbonyl)-l-selenocysteine 3 in acetonitrile and characterized by time-resolved (TR) UV/Vis, Fourier transform infrared (FTIR), and electron paramagnetic spectroscopy in combination with theoretical methods. A detailed product study was conducted using gas chromatography and one- and two-dimensional NMR spectroscopy. In the case of [(9-fluorenylideneamino)oxycarbonyl]methyl(N-tert-butoxycarbonyl)-l-selenocysteine 3, the (9-fluorenylideneamino)oxycarbonyl moiety serves as a photolabile protection group providing a "caged selenocysteinyl radical" suitable for biophysical applications. Cleavage of the diselenide bridge or the selenium-carbonyl bond by irradiation is possible in high quantum yields. Because of the lack of a good IR chromophore in the mid-IR region, the selenocysteinyl radical 1 cannot be monitored directly by TR FTIR spectroscopy. TR UV/Vis spectroscopy revealed the formation of the selenocysteinyl radical 1 from both precursors. The selenocysteinyl radical 1 has a lifetime tau approximately 63 mus and exhibits a strong band located at lambda(max) = 335 nm. Calculated UV absorptions of the selenocysteinyl radical (UB3LYP/6-311G(d,p)) are in good agreement with the experimental results. The use of TR UV/Vis spectroscopy permitted the determination of the decay rates of the selenocysteinyl radical in the presence of two quenchers. The product studies demonstrated the reversible photoreaction of dimethyl bis(N-tert-butoxycarbonyl)-l-selenocystine 2. Products of the photolysis of the "caged selenocysteinyl radical" precursor 3 are dimethyl bis(N-tert-butoxycarbonyl)-l-selenocystine 2, carbon dioxide, and some further smaller fragments. In addition, the photodecomposition of the (9-fluorenylideneamino)oxycarbonyl moiety produced 9-fluorenone-oxime 4, 9-fluoren-imine 5, and 6 and 7 as products of the dimerization of two 9-fluorenoneiminoxy radicals 8.  相似文献   

10.
Photolysis of ketones (1, 1-oMe, 2, 2-oMe, 3, and 4) adsorbed on ZSM-5 zeolites produces persistent carbon-centered radicals that can be readily observed by conventional steady-state EPR spectroscopy. The radicals are persistent for time periods of seconds to many hours depending on the supramolecular structure of the initial radical@zeolite complex and the diffusion and reaction dynamics of radicals produced by photolysis. The structures of the persistent radicals responsible for the observed EPR spectra are determined by a combination of alternate methods of generation of the same radical, by deuterium substitution, and by spectral simulation. A clear requirement for persistence is that the radicals produced by photolysis must either separate and diffuse from the external to the internal surface or be generated within the internal surface and separate and diffuse apart. The persistence of radicals located on the internal surface is the result of inhibition of radical-radical reactions. Radicals that are produced on the external surface and whose molecular structure prevents diffusion into the internal surface are transient because radical-radical reactions occur rapidly on the external surface. The reactions of the persistent radicals with oxygen and nitric oxide were directly studied in situ by EPR analysis. In the case of reaction with oxygen, persistent peroxy radicals are formed in high yield. The addition of nitric oxide scavenges persistent radicals and leads initially to a diamagnetic nitroso compound, which is transformed into a persistent nitroxide radical by further photolysis. The influence of variation of radical structure on transience/persistence is discussed and correlated with supramolecular structure and reactivity of the radicals and their parent ketones.  相似文献   

11.
Transient radicals C (CH3)2X are generated in solution by laser flash photolysis, and chemically induced electron polarization (CIDEP) is investigated by time-resolved ESR spectroscopy. The sign reversal of multiplet polarization at longer times, observed for t-butyl and 2-hydroxy-2-propyl radicals is studied as a function of temperature and solvent and is explainable by efficient electron-nuclear cross relaxation due to modulation of the nonplanarity at the radical centre.  相似文献   

12.
Free radical reactions induced by the photolysis of the lignin model compound α-guaiacoxylacetoveratrone have been studied by conventional and time-resolved ESR spectroscopy. In the presence of efficient hydrogen donors such as aqueous and hydroxylic solvents the primary reaction involves photoreduction of the triplet phenacyl ether to form the ketyl radical followed by rapid cleavage to the phenacyl radical and guaiacol. Subsequent formation of polarized guaiacoxyl radicals is due to secondary photo-oxidation. The cleavage of the ketyl radical is retarded in basic media and accelerated in acetic acid. Minor reaction pathways involving excited singlets cannot be ruled out by the current CIDEP observations.  相似文献   

13.
[reaction: see text] The 9,10-dicyanoanthracene (DCA)-sensitized photoreaction of triarylphosphines (1) was carried out in acetonitrile under aerobic conditions. Phosphine 1 was oxidized to the corresponding phosphine oxide with no appreciable side reactions. Product analysis and laser flash photolysis experiments suggest that the radical cation of 1 formed by the electron transfer from 1 to DCA in the singlet excited state ((1)DCA) reacts with O(2) to eventually afford the phosphine oxide.  相似文献   

14.
The rate constants for the gas-phase reactions of isopropyl- and tert-butylperoxy radicals with nitric oxide (NO) have been studied at 298 +/- 2 K and a total pressure of 3-4 Torr (He buffer) using a laser flash photolysis technique coupled with a time-resolved negative-ionization mass spectrometry. The alkyl peroxy radicals were generated by the reaction of alkyl radicals with excess O(2), where alkyl radicals were prepared by laser photolysis of several precursor molecules. The rate constants were determined to be k(i-C(3)H(7)O(2) + NO) = (8.0 +/- 1.5) x 10(-12) and k(t-C(4)H(9)O(2) + NO) = (8.6 +/- 1.4) x 10(-12) cm(3) molecule(-1) s(-1). The results in combination with our previous studies are discussed in terms of the systematic reactivity of alkyl peroxy radicals toward NO.  相似文献   

15.
The properties of benzophenone ketyl radical analogues with large aromatic ring systems, such as naphthylphenylketone (2), 4-benzoylbiphenyl (3), and bis(biphenyl-4-yl)methanone (4), were investigated in the excited state by using nanosecond-picosecond two-color two-laser flash photolysis. Fluorescence and transient absorption spectra of ketyl radicals of 2-4 in the excited state were observed for the first time. The fluorescence and properties of the excited ketyl radicals were significantly affected by the size and electronic properties of the aromatic ring systems. The reactivity of the ketyl radicals in the excited state with several quenchers was examined and they were found to show reactivity toward N,N-diethylaniline. In addition, for the benzophenone ketyl radical, a unique quenching process of the radical in the excited state by the ground-state parent molecule was found. The factors regulating the fluorescence lifetime of the ketyl radicals in the excited state are discussed quantitatively.  相似文献   

16.
Diastereoselective radical hydroacylation of chiral alkylidenemalonates with aliphatic aldehydes is realized by the combination of a hypervalent iodine(III) reagent and UV‐light irradiation. The reaction is initiated by the photolysis of hypervalent iodine(III) reagents under mild, metal‐free conditions, and is the first example of diastereoselective addition of acyl radicals to olefins to afford chiral ketones in a highly stereoselective fashion. The obtained optically active ketones are useful chiral synthons, as exemplified by the short formal synthesis of (?)‐methyleneolactocin.  相似文献   

17.
The benzoin group caged compound has received strong interests due to its excellent photo-deprotection properties and wide use in chemical and biological studies. We used time-resolved infrared spectroscopy to investigate the photochemical reaction of the benzoin caged compound, o-(2-methylbenzoyl)-DL-benzoin under 266 nm laser irradiation. Taking advantage of the specific vibrational marker bands and the IR discerning capability, we have detected and identified the uncaging product 2-methylbenzoic acid, and two intermediate radicals of benzoyl and 2-methylbenzoate benzyl in the transient infrared spectra. Our results provide spectral evidence to support the homolytic cleavage reaction of C-C=O bond in competition with the deprotection reaction. Moreover, the product yields of 2-methylbenzoic} acid and benzoyl radical were observed to be affected by solvents and a largely water containing solvent can be in favor of the deprotection reaction.  相似文献   

18.
On thermolysis of the methoxy (MeO-TMD), tert-butoxy (tBuO-TMD), and hydroxy (HO-TMD) derivatives of 3,3,4,4-tetramethyl-1,2-dioxetane (TMD) in the presence of dG and calf-thymus DNA, the guanine is oxidized considerably more efficiently than the parent TMD. The same trend in the oxidative reactivity is observed for the photolysis of the corresponding oxy-substituted ketones versus acetone. The oxidative reactivity order in the dioxetane thermolysis, as well as in the ketone photolysis, parallels the ability of the excited ketones to release radicals (determined by spin trapping with DMPO and EPR spectroscopy) upon alpha cleavage (Norrish-type-I reaction). In the presence of molecular oxygen, the carbon-centered radicals are scavenged to produce peroxyl radicals, which are proposed as the reactive species in the oxidation of the guanine in dG and calf-thymus DNA.  相似文献   

19.
利用时间分辨ESR波谱仪,研究了苯甲醛在乙二醇和表面活性剂SDBS,TX-100 的胶束溶液中的激光光解化学诱导动态电子极化(CIDEP)现象。苯甲醛在激光照 射下可以从体系和自身中得到氢生成α-羟基苄自由基和苯酰自由基,在SDBS胶束 中是自由基对机理RPM极化,而在TX-100胶束中是三重态机理TM极化。计算机模拟 谱图进一步证实了自由基的产生和极化机理。  相似文献   

20.
The diphenyl ketyl radical which is formed upon photolysis of α-phenyl benzoin is produced in its excited state upon intense pulsed laser irradiation. Using the techniques of time-resolved absorption and emission spectroscopy, reaction rate constants for the ground and excited states of this radical were obtained. For the radical quenchers employed, the excited state reactivity is found to be typically several orders of magnitude greater than that of the ground state. It is concluded that the excited state of diphenyl ketyl radical reacts predominantly by electron transfer processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号