首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
To boost the performance for various applications, a rational bottom-up design on materials is necessary. The defect engineering on nanoparticle at the atomic level can efficiently tune the electronic behavior, which offers great opportunities in enhancing the catalytic performance. In this paper, we optimized the surface oxygen vacancy concentration and created the lattice distortion in rare-earth-based perovskite oxide through gradient replacement of the B site with valence alternated element. The dual defects make the electron spin state transit from low spin state to high spin state, thus decreasing the charge transport resistance. Furthermore, assembly the modified nanoparticle subunits into the micro-sized hollow multishelled structures can provide porous shells, abundant interior space and effective contact, which enables an enhanced mass transfer and a shorter charge transport path. As a result, the systemic design in the electronic and nano-micro structures for catalyst has brought an excellent oxygen evolution performance.  相似文献   

2.
Surface properties of nanoparticle are of high importance in the field of biotechnology, drug delivery and micro/nanofabrication. In this article, we developed a comprehensive theoretical model and subsequently solved that numerically to study the effect of thermodiffusion of ions on surface charge properties of nanoparticle. The theoretical study has been done considering silica nanoparticle for two aqueous solutions NaCl and KCl. The effect of solution pH in conjunction with nanoparticle temperature on surface charge density has been obtained for different salt concentrations (1, 10 and 100 mM) and nanoparticle size (diameter of 2 and 100 nm). It is observed from the results that with increasing temperature of the nanoparticle, the negative surface charge density gets higher due to increasing thermodiffusion effect. It is also found out that the magnitude of surface charge density is higher for KCl solution than NaCl solution under same condition which is attributed mostly due to less thermodiffusion of counterions for KCl than NaCl. Present study also shows that magnitude of surface charge density decreases with increasing nanoparticle size until it reaches a limiting value (called critical size) above which the effect of nanoparticle size on surface charge density is insignificant.  相似文献   

3.
We report on charge transport measurements through laterally contacted assemblies of Au nanoparticles capped with 11-mercaptoundecanoic acid ligands. Both alternating- and direct-current data indicate that although the nanoparticles behave as electrically isolated metallic islands, there is a significant influence from the nanoparticle environment, indicating the existence of a slow reorganization process linked to charge transport. On the basis of the observation of temperature-dependent hysteresis of charge tunneling, we propose that this process is due to proton transfer between the carboxylic acid tails of the ligands.  相似文献   

4.
To understand the photophysical properties of intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) states on a gold nanoparticle (Au NP) surface, we have designed and synthesized a new coumarin molecule (C3) that exists both as ICT and TICT states in its excited state in a polar environment. On a Au NP surface, an excited C3 molecule only exists as an ICT state owing to restricted molecular rotation of a diethylamino group; as a result, no conversion from the ICT to TICT state was observed. Selection of the preferential state of a molecule with dual emitting states can be helpful for selected biological applications.  相似文献   

5.
Charge redistribution on surface of Ru nanoparticle can significantly affect electrocatalytic HER activity. Herein, a double atomic-tuned RuBi SAA/Bi@OG nanostructure that features RuBi single-atom alloy nanoparticle supported by Bi−O single-site-doped graphene was successfully developed by one-step pyrolysis method. The alloyed Bi single atom and adjacent Bi−O single site in RuBi SAA/Bi@OG can synergistically manipulate electron transfer on Ru surface leading to optimum charge redistribution. Thus, the resulting RuBi SAA/Bi@OG exhibits superior alkaline HER activity. Its mass activity is up to 65000 mA mg−1 at an overpotential of 150 mV, which is 72.2 times as much as that of commercial Pt/C. DFT calculations reveal that the RuBi SAA/Bi@OG possesses the optimum charge redistribution, which is most beneficial to strengthen adsorption of water and weaken hydrogen-adsorption free energy in HER process. This double atomic-tuned strategy on surface charge redistribution of Ru nanoparticle opens a new way to develop highly efficient electrocatalysts.  相似文献   

6.
Controlled nanoparticle assembly by dewetting of charged polymer solutions   总被引:1,自引:0,他引:1  
In this paper, we present an alternative approach for controlled nanoparticle organization on a solid substrate by applying dewetting patterns of charged polymer solutions as a templating system. Thin films of charged polymer solutions dewet a solid substrate to form complex dewetting patterns that depend on the polymer charge density. These patterns, ranging from polygonal networks to elongated structures that are stabilized by viscous forces during dewetting, serve as potential templates for two-dimensional nanoparticle organization on a solid substrate. Thus, while nanoparticles dried in pure water undergo self-assembly to form close-packed arrays, addition of charged polymer in the dispersion leads to the formation of open structures that are directed by the dewetting patterns of the polymer solution. In this study, we focus on the application of elongated structures resulting from dewetting of high-charge-density polymer solutions to align nanoparticles of silica and gold into long chains that are several micrometers in length. The particle ordering process is a two-step mechanism: an initial confinement of the nanoparticles in the dewetting structures and self-assembly of the particles within these structures upon further drying by lateral capillary attractions.  相似文献   

7.
We present a lattice model describing the formation of silica nanoparticles in the early stages of the clear-solution templated synthesis of silicalite-1 zeolite. Silica condensation/hydrolysis is modeled by a nearest-neighbor attraction, while the electrostatics are represented by an orientation-dependent, short-range interaction. Using this simplified model, we show excellent qualitative agreement with published experimental observations. The nanoparticles are identified as a metastable state, stabilized by electrostatic interactions between the negatively charged silica surface and a layer of organic cations. Nanoparticle size is controlled mainly by the solution pH, through nanoparticle surface charge. The size and concentration of the charge-balancing cation are found to have a negligible effect on nanoparticle size. Increasing the temperature allows for further particle growth by Ostwald ripening. We suggest that this mechanism may play a role in the growth of zeolite crystals.  相似文献   

8.
We report a simple design and synthesis of a donor-acceptor tetraphenylethene-naphthalimide (TPE-NI) dyad, in which TPE acts both as an electron-donor for intramolecular charge transfer (ICT) and activator for aggregation induced emission (AIE). Strong solvent-dependent photoluminescence covering almost the whole visible spectrum and AIE in its nanoparticle state compared to its solution state are demonstrated.  相似文献   

9.
Photoinduced electron transfer between a carotenoid and TiO2 nanoparticle   总被引:1,自引:0,他引:1  
The dynamics of photoinduced electron injection and recombination between all-trans-8'-apo-beta-caroten-8'-oic acid (ACOA) and a TiO(2) colloidal nanoparticle have been studied by means of transient absorption spectroscopy. We observed an ultrafast ( approximately 360 fs) electron injection from the initially excited S(2) state of ACOA into the TiO(2) conduction band with a quantum yield of approximately 40%. As a result, the ACOA(*)(+) radical cation was formed, as demonstrated by its intense absorption band centered at 840 nm. Because of the competing S(2)-S(1) internal conversion, approximately 60% of the S(2)-state population relaxes to the S(1) state. Although the S(1) state is thermodynamically favorable to donate electrons to the TiO(2), no evidence was found for electron injection from the ACOA S(1) state, most likely as a result of a complicated electronic nature of the S(1) state, which decays with a approximately 18 ps time constant to the ground state. The charge recombination between the injected electrons and the ACOA(*)(+) was found to be a highly nonexponential process extending from picoseconds to microseconds. Besides the usual pathway of charge recombination forming the ACOA ground state, about half of the ACOA(*)(+) recombines via the ACOA triplet state, which was monitored by its absorption band at 530 nm. This second channel of recombination proceeds on the nanosecond time scale, and the formed triplet state decays to the ground state with a lifetime of approximately 7.3 micros. By examination of the process of photoinduced electron transfer in a carotenoid-semiconductor system, the results provide an insight into the photophysical properties of carotenoids, as well as evidence that the interfacial electron injection occurs from the initially populated excited state prior to electronic and nuclear relaxation of the carotenoid molecule.  相似文献   

10.
CdS敏化对TiO2纳米薄膜电极光生电荷转移特性的影响   总被引:18,自引:2,他引:18  
1991年Gratzel等[1]以敏化的TiO2纳米薄膜电极组成的液体结光电化学太阳能电池(PEC),其光电转换效率(IPCE)达到10%. 最近,选用固态电解质使这种PEC的IPCE达到33%[2].于是用有机染料[3,4]及窄带隙半导体纳米微粒[5]敏化的电极受到了广泛关注.  相似文献   

11.
A functional nanoparticle with light-triggered charge reversal based on a protected amine-bridged polysilsesquioxane was designed. An emulsion- and amine-free sol-gel synthesis was developed to prepare uniform nanospheres. Photolysis of suspensions of these nanoparticles results in a reversal of the ζ potential. This behavior has been used to trigger nanoparticle self-assembly, nanocomposite hydrogel formation, and nanoparticle release, showing the potential of this material in nanoscale manipulation and nanoparticle therapy.  相似文献   

12.
A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO(2) nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport and a factor four lower defect state density than conventional rutile nanoparticle films.  相似文献   

13.
Atomic hydrogen electrosorption is reported at crystallite sites of polyacrylate-capped Pt nanoparticles (d = 2.5 +/- 0.6 nm), by assembling nanostructured electrodes of polyacrylate-Pt nanocrystallites layer-by-layer in a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). Cyclic voltammetry in 1 M H2SO4 revealed a strongly adsorbed hydrogen state and a weakly adsorbed hydrogen state assigned to adsorption at (100) and (110) sites of the modified nanocrystallites, respectively. Resolving hydrogen adsorption states signifies that surface capping by the carboxylate groups is not irreversibly blocking hydrogen adsorption sites at the modified Pt nanoparticle surface. Adsorption peak currents increased with increasing the number of layers up to 16 bilayers, indicating the feasibility of nanoparticle charging via interparticle charge hopping and the accessibility of adsorption states within the thickness of the nanoparticle/polyelectrolyte multilayers. Despite similarity in hydrogen adsorption in the cyclic voltammorgrams in 1 M H2SO4, negative shifts in adsorption potentials were measured at the nanocrystallite Pt-polyelectrolyte multilayers relative to a polycrystalline bulk Pt surface. This potential shift is attributed to a kinetic limitation in the reductive hydrogen adsorption as a result of the Pt nanoparticle surface modification and the polyelectrolyte environment.  相似文献   

14.
The growth behavior of all-silica nanoparticle multilayer thin films assembled via layer-by-layer deposition of oppositely charged SiO2 nanoparticles was studied as a function of assembly conditions. Amine-functionalized SiO2 nanoparticles were assembled into multilayers through the use of three different sizes of negatively charged SiO2 nanoparticles. The assembly pH of the nanoparticle suspensions needed to achieve maximum growth for each system was found to be different. However, the surface charge /z/ of the negatively charged silica nanoparticles at the optimal assembly pH was approximately the same, indicating the importance of this parameter in determining the growth behavior of all-nanoparticle multilayers. When /z/ of the negatively charged nanoparticles lies between 0.6z(0) and 1.2z(0) (where z(0) is the pH-independent value of the zeta-potential of the positively charged nanoparticles used in this study), the multilayers show maximum growth for each system. The effect of particle size on the film structure was also investigated. Although nanoparticle size significantly influenced the average bilayer thickness of the multilayers, the porosity and refractive index of multilayers made from nanoparticles of different sizes varied by a small amount. For example, the porosity of the different multilayer systems ranged from 42 to 49%. This study further demonstrates that one-component all-nanoparticle multilayers can be assembled successfully by depositing nanoparticles of the same material but with opposite surface charge.  相似文献   

15.
Electrochemical experiments with a rotating disk electrode are used to measure specific catalytic activity of Pt/C structures in the oxygen reduction reaction at the density of Pt nanoparticles on the glassy carbon support surface below one monolayer. The specific activity maximum is found at the coverage of about 0.4 monolayer. An explanation of the observed dependence is suggested that is based on consideration of the relationship between the surface density and charge state of the system of metallic catalyst particles. A numeric model is developed that describes charge transfer in the catalyst structure due to the difference in the work functions between the metal nanoparticles and support with account for the discrete nature of the nanoparticle charging and their mutual polarization. Calculations show that the carbon support coverage by Pt particles of about 0.4 monolayer corresponds to the largest amount of charged particles with the maximum energy of electrons, which provides the maximum catalyst activity and explains the dependence observed in the experiment.  相似文献   

16.
Advanced drug delivery system development is very important for the cancer therapies. The fixing of specific targeting ligands onto biodegradable carriers can add specificity to the usual chemotherapeutical treatments that current chemotherapies lack of. This study describes the preparation of a new nanoparticle system based on electrostatic interactions between alginate and piperazine. Nanoparticles with a negative surface charge were prepared through the electrostatic interaction between alginate and piperazine under acid aqueous condition. This kind of interactions and materials has never been used before to produce nanoparticles. This nanoparticle system has been designed to be used as a carrier where superficial carboxylate groups are the binding site for different kind of molecules, for example, proteins and organic molecules. Afterwards, surface engineering was performed on the nanoparticles produced; cisplatin and epidermal growth factor (EGF) were covalently linked on the surface of the nanoparticle using reagents by carbodiimide chemistry to give a covalent bond between EGF and nanoparticles and between cisplatin and nanoparticles. As a result, this study reports the development of a potential advanced drug delivery system, which in the future will enable clinical trials in animals and humans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The self-assembly of hydrophilic silica nanoparticles at the surface of charged submicrometer triglyceride droplets has been investigated with the aim to optimize the preparation of stable colloidosomes. The droplet charge, oil phase volume fraction, droplet/nanoparticle ratio, and salt concentration play important roles in controlling nanoparticle interactions and are reflected in the colloidosome zeta potential, size, stability, and interfacial structure (visualized by freeze-fracture SEM). Silica nanoparticle interactions with negatively charged droplets are weak, and partially covered droplets are identified. Positively charged droplets are strongly coated by silica nanoparticles and undergo charge reversal at specific droplet to nanoparticle ratios and electrolyte concentrations. Droplets at volume fractions (varphi) <10 (-4) undergo time-dependent limited coalescence until nanoparticle coverage is complete. For varphi in the range 10 (-4) to 2.5 x 10 (-4) and at certain critical droplet to nanoparticle ratios, droplets undergo neutralization or charge reversal coupled with aggregation and precipitation; this occurs in a time-independent manner. Specific conditions have been identified where stable 1-3 mum colloidosomes can be phase separated from heterocoagulates of droplets and nanoparticles.  相似文献   

18.
The objective of this study is to utilize the pH sensitivity of modified mesoporous silica nanoparticles (MSN) for oral drug delivery. In the first time, a pH‐sensitive ionic liquid was synthesized through the quaternization of 3‐aminopropyltrimethoxysilane (3‐ATMS) with sodium monochloroacetate (SMCA). Then, silica nanoparticle was modified by this pH‐sensitive ionic liquid and converted to a pH‐sensitive positive‐charge silica nanoparticle (PCSN). The nanoparticle was characterized by FTIR and SEM. Naproxen as anionic drug molecules was entrapped in this pH‐sensitive positive‐charge silica nanoparticles (PCSN) and the in vitro release profiles were established separately in both (SGF, pH 1) and (SIF, pH 7.4).  相似文献   

19.
Laser-Induced Breakdown Spectroscopy (LIBS) was employed for on-line and real time process monitoring during nanoparticle production by laser pyrolysis. Laser pyrolysis has proved to be a reliable and versatile method for nanoparticle production. However, an on-line and real time monitoring system could greatly enhance the process optimization and accordingly improve its performances. For this purpose, experiments aiming at demonstrating the feasibility of an on-line monitoring system for silicon carbide nanoparticle production using the LIBS technique were carried out. Nanosecond laser pulses were focused into a cell through which part of the nanoparticle flux diverted from the production process was flowed for LIBS analysis purposes. The nanoparticles were vaporized within the laser-induced plasma created in argon used as background gas in the process. Temporally-resolved emission spectroscopy measurements were performed in order to monitor nanoparticle stoichiometry. Promising results were obtained and on-line Si/Cx stoichiometry was successfully observed. These results put forward the possibility of real time correction of the nanoparticle stoichiometry during the production process.  相似文献   

20.
In the present study, the adsorption of a protein on a nanoparticle with a nanostructured surface, which is created using successively patterned Gaussian pillars (GPs), is simulated by considering the charge regulation within the electrical double layer of a silica nanoparticle (NP). Namely, the mathematical models for the adsorption mechanism, such as classical Langmuir model, extended Langmuir model, and two-state model, are coupled with charge regulation model. By this means, size and pH variables are able to included to the calculations. Moreover, free space, surface curvature, and conformational changes are also taken into account. For systematic investigation, the solution's pH, surface charge density, initial protein concentration, electrostatic charge of the protein, and the diameter of the spherical NP are varied. As a result, the vital properties of a nanoparticle, such as protonation/deprotonation, polarization, topography, and morphology, are considered in the current simulations. The surface charge density and surface chemistry change with NP and GP sizes. The present results reveal that the protein adsorption on an NP with a smooth surface reaches a faster complete surface coverage than an NP with a nanostructured surface. Both states of conformational changes are also affected by the presence of the GP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号