首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A schlieren method was used to generate time-resolved images of the tunneling ionization front produced when an ultrashort high-power laser pulse irradiates He gas. By superimposing sequential schlieren images, we obtained information about the laser propagation and found that the ionization front propagated farther with decreasing density of the target gas. Ray-tracing suggested that this density dependence is a result of the spatial distribution of the laser intensity. Received: 20 May 1999 / Revised version: 19 August 1999 / Published online: 27 January 2000  相似文献   

2.
The interaction of a subpicosecond KrF laser pulse with a preformed carbon plasma of various scale lengths is investigated. Two different interaction geometries are chosen. In the first one the propagation vector of the short pulse has a component along the density gradient of the preformed plasma (angle of incidence is 45°). In the second geometry the propagation direction of the short pulse is perpendicular to the density gradient of the preplasma (angle of incidence is 90°). The emitted soft X-ray spectrum in the wavelength interval from 10 to 700 is observed while changing several parameters of the experiment. It is found that the emission in the short wavelength part under 200 results from the radiation of ions created by collisional heating near the critical density region. The long wavelength part above 200 , enhanced up to a maximal factor of 20, is mainly produced by radiating particles field—ionized up to the He-like carbon state in the high-intensity laser field. The short wavelength part is missing in the case of 90° angle of incidence because there is no interaction with the critical layer that results in an insufficient collisional heating.  相似文献   

3.
2 Cu3O7, using a Q-switched Nd:YAG laser is investigated by time-resolved emission-spectroscopic techniques at various laser irradiances. It is observed that beyond a laser irradiance of 2.6×1011 W cm-2, the ejected plume collectively drifts away from the target with a sharp increase in velocity to 1.25×106 cm s-1, which is twice its velocity observed at lower laser irradiances. This sudden drift apparently occurs as a result of the formation of a charged double layer at the external plume boundary. This diffusion is collective, that is, the electrons and ions inside the plume diffuse together simultaneously and hence it is similar to the ambipolar diffusion of charged particles in a discharge plasma. Received: 30 January 1998/Revised version: 12 June 1998  相似文献   

4.
We optimize the conversion of laser energy into extreme ultraviolet (EUV) radiation by tailoring the laser parameters for a laser-produced plasma generated from 20 μm diameter water droplets. It is shown that mass-limited targets require careful adaption of laser-pulse energy and laser-pulse duration separately, rather than laser intensity, which seems to be adequate for bulk targets. The optimal pulse duration scales with the droplet radius, and the optimal pulse energy with the droplet volume. With optimized parameters, we obtain a conversion efficiency of 0.23% in 4π and 2.5% bandwidth for 13 nm radiation, the future EUV lithography light. Received: 16 July 2001 / Revised version: 25 September 2001 / Published online: 7 November 2001  相似文献   

5.
2 . Received: 20 January 1997/Accepted: 23 June 1997  相似文献   

6.
7.
The influence of a prepulse on soft X-ray emission in the range of 50–200 from an aluminium plasma produced by 130 fs Ti: Sapphire laser pulses with an intensity of 1014 W/cm2 at normal incidence is studied. An ultrashort prepulse with an intensity of 1013 W/cm2 significantly enhances soft X-ray emission when there is a long time separation ( > 100 ps) between the prepulse and an intense main pulse. It is also observed for the first time that a prepulse with a short pulse time separation can slightly reduce soft X-ray emission, contrary to the previous work done using 248 nm laser pulses. This can be explained qualitatively in terms of the dependence of absorption on the length scale.  相似文献   

8.
Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities.  相似文献   

9.
The effect of a short prepulse (0.5 ps) on soft X-ray spectra from a plasma generated by a high intensity KrF* laser pulse (main pulse: 0.5 ps, intensity I main=5.3×1015 W/cm2) on flat targets of Al and Cu has been studied in detail. The spectra have been measured as a function of the pulse separation t between the two pulses and the prepulse intensity I pre. It was found that both the overall emission and the line emission increased with t (at constant I pre) and with I pre (at constant t). In particular, lines in the shorter wavelength region had higher intensity. The influence of the prepulse on the line emission of specific transitions in the Al spectra was investigated systematicly. An explanation for the observed effects is given.  相似文献   

10.
The role of recombination and charge-exchange processes in enhancing the line emission of various ionic species of laser-ablated carbon in the presence of helium and argon are presented.  相似文献   

11.
By adopting a fast photography and time-resolved optical emission spectrometry, we have investigated the effects of transverse magnetic field on the expansion dynamics and enrichment of Zn atoms and Zn+ ions in a plume produced by laser ablation of a Zn target in oxygen atmosphere. Plume splitting due to the magnetic field was apparent but the splitting patterns of Zn and Zn+ were totally different. The surface morphology and photoluminescence characteristics also changed significantly. In particular, the growth rate increased by as much as 2.4-4.3 times compared to the conventional PLD method.  相似文献   

12.
The dynamics of debris from the laser-produced tin (Sn) plasma was investigated for an extreme ultraviolet light source in order to establish the guideline for the optimum design of a mitigation system, such as a mass-limited target. The dissemination of the Sn atoms from the different shapes of a wire and a mass-limited droplet target were investigated using the laser-induced fluorescence (LIF) imaging method. The Sn droplet targets with a diameter in the range of 5 to 17 μm were prepared by a new droplet generating technique using a pulsed laser. There was a large difference in the angular distribution of Sn atoms in the plane parallel and perpendicular to the wire axis, indicating the curvature of the target surface governed the angular distribution of the ablated species. The spatial distributions of Sn atoms from the droplet targets were similar to those from the curved surface of the wire targets. The ablation dynamics of the droplet observed by a high-speed imaging camera is also discussed.  相似文献   

13.
2 Cu3O7 target in vacuum and the plasma thus generated was studied using time-resolved spectroscopic techniques. Line broadening of the Ba I emission line at 553.5 nm was monitored as a function of time elapsed after the incidence of a laser pulse on the target. Measured line profiles of barium species were used to infer the electron density and temperature, and the time evolution of these important plasma parameters has been worked out. Received: 23 April 1997/Revised version: 25 August 1997  相似文献   

14.
Ion projectile stopping at velocity smaller than target electron thermal velocity in a strong magnetic field, is investigated within a novel diffusion formulation (Dufty-Berkovsky), based on Green-Kubo integrands evaluated in magnetized one component plasma models, respectively framed on target ions and electrons. Analytic expressions are reported for slowing down orthogonal and parallel to an arbitrary large magnetic field, which are free from the usual uncertainties plaguing the standard perturbative derivations.  相似文献   

15.
The wavelength dependence of laser-produced breakdown in air, CO and CO2 has been studied using the four Nd:YAG harmonics (266 nm, 355 nm, 532 nm and 1064 nm) and the ArF-excimer laser (193 nm). Breakdown thresholds at these wavelengths are reported for air, CO and CO2. A significant reduction in the breakdown thresholds for both CO and CO2 is apparent when comparing 193 nm with the four Nd:YAG harmonics. This reduction is attributed to the resonance-enhanced two-photon ionization of metastable carbon atoms generated in the laser focus at the ArF-laser wavelength. In addition to reporting breakdown thresholds, the laser-produced plasmas in CO and CO2 are characterized in terms of plasma temperatures and electron densities which are measured by time-resolved emission spectroscopy. Electron densities range from 9 × 1017 cm–3 to 1 × 1017 cm–3. Excitation temperatures range from 22 000 K at 0.2 µs to 11 000 K at 2 µs. Ionization temperatures range from 22 000 K at 0.1 µs to 16 000 K at 2 µs. Evidence is presented to indicate that, like ArF-laser-produced plasmas, Nd:YAG-laser-produced plasmas formed in CO and CO2 are in or near a state of Local Thermodynamic Equilibrium (LTE) soon after their formation.  相似文献   

16.
-1 in the case of plasmas with short active medium lengths. The false gain in the case of fiber targets is found to be of equal magnitude to that for slabs in the case of plasmas with less than 0.1 cm active medium lengths. Calculations for slab targets predict that adopting a tolerance of ±1 cm-1 for gain will severely restrict the time and the active medium length of the plasma that can be used for error-free observations, while those for fiber targets are found to be considerably relaxed. The effects of false gain in the 54.2 Å Na Balmer α laser is also investigated, again revealing the importance of this phenomena under optimum gain conditions. Received: 10 December 1996/Revised version: 12 March 1997  相似文献   

17.
Ultrashort bursts of K α X-ray radiation were generated from fs-laser-produced plasmas. A complete experimental characterization of the X-ray source in terms of spectral, spatial, and temporal properties was performed. The pulse width of the K α burst is shorter than 250 fs. The time-resolved evolution of a shock wave launched by a synchronized laser pulse in InSb was investigated. The transient change of the rocking curve yields detailed information on the structural changes. Received: 29 June 2000 / Published online: 22 November 2000  相似文献   

18.
The absorption of 250 fs KrF laser pulses incident on solid targets of aluminum, copper and gold has been measured for normal incidence as a function of laser intensity in the range of 1012–1014 W cm–2 and as a function of polarization and angle of incidence for the intensity range of 1014–2.5×1015 W cm–2. As the intensity increases from 1012 W cm–2 the reflectivity at normal incidence changes from the low-intensity mirror reflectivity value to values in the range of 0.5–0.61 at 1014 W cm–2. For this intensity maximum absorption of 63–80% has been observed for p-polarized radiation at angles of incidence in the range of 54°–57°, increasing with atomic number. The results are compared with the expected Fresnel reflectivity from a sharp vacuum-plasma interface with the refractive index given by the Drude model and also to numerical calculations of reflectivity for various scale length density profiles. Qualitative agreement is found with the Fresnel/Drude model and quantitative agreement is noticed with the numerical calculations of absorption on a steep density profile with normalized collision frequencies, v/, in the range of 0.13–0.15 at critical density and normalized density gradient scale lengths, L/0, in the range of 0.018–0.053 for a laser intensity of 1014 W cm–2.At 2.5×1015 W cm–2 a small amount of preplasma is present and maximum absorption of 64–76% has been observed for p-polarized radiation at angles of incidence in the range of 45°–50°.Dedicated to Prof. Dr. Rudolf Wienecke on the occasion of his 65th birthdayOn leave from: Department of Electrical Engineering, University of Alberta, Edmonton, T6G 2G7, Canada  相似文献   

19.
Jin-Liang Guo  He-Shan Song 《Physica A》2009,388(11):2254-2261
Taking into account the intrinsic decoherence, the concurrence of the nearest and the next-to-nearest neighbor qubits in a three-qubit Heisenberg XY chain are investigated when a nonuniform magnetic field is included. We show that the effects of the external magnetic field, including the uniform and inhomogeneous magnetic fields, on the time evolution of entanglement between the nearest and the next-to-nearest neighbor qubits rely deeply on the initial states. We can moderate the destructive effect of intrinsic decoherence by controlling the uniform and inhomogeneous magnetic fields, so that a proper value of uniform and inhomogeneous magnetic fields can, to a great extent enhance the stationary entanglement.  相似文献   

20.
It is shown that during a capillary discharge, plasma channels for guiding light from high-power lasers are temporarily formed. The experiments are performed with alumina capillaries of 2-mm radius and 14-cm length filled with about 100 Pa of helium, methane or hydrogen. The transmission of probe light is enhanced due to light guiding by a factor up to 20 during a time window of 5 ns. The results indicate the formation of a first channel, when the shock wave reaches the axis, and of a second channel after the reflection of the shock wave on the axis. Compared to simple focussing by a lens, in the guiding device the intensity–length product increases by almost two orders of magnitude. Guiding is achieved over 180 times the Rayleigh length. Received: 20 June 2000 / Revised version: 4 August 2000 / Published online: 6 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号