首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
钟汉华  周见红  顾辰杰  王勉  方云团  许田  周骏 《中国物理 B》2017,26(12):127301-127301
Fano interference of metallic nanostructure is an effective way to reduce the irradiation loss and improve the spectral resolution. A Π-shaped gold nano-trimer, which is composed of a gold nanorod and two gold nanorices, is presented to investigate the properties of Fano resonances in the visible spectrum by using the finite element method(FEM). The theoretical analysis demonstrates that the Fano resonance of the Π-shaped gold nano-trimer is attributed to the near-field interaction between the bright mode of the nanorice pair and the dark quadrupole mode of the nanorod. Furthermore, by breaking the geometric symmetry of the nanostructure the line-shape spectrum with double Fano resonances of Π-shaped gold nano-trimer is obtained and exhibits structure-dependent and medium-dependent characteristics. It is a helpful strategy to design a plasmonic nanostructure for implementing multiple Fano resonances in practical applications.  相似文献   

2.
Multiple Fano resonances of plasmonic nanostructures have attracted much attention due to their potential applications in multicomponent biosensing. In this paper, we propose a series of hybridized nanostructures consisting of a single nanoring and multiple nanorods to generate multiple Fano resonances. One to three Fano resonances are achieved through tuning the number of nanorods. The interaction coupling process between different components of the nanostructures is recognized as the mechanism of multiple Fano resonances. We also theoretically investigate the applications of the produced multiple Fano resonances in refractive index sensing. The specific properties of multiple Fano resonances will make our proposed nanostructures beneficial to high-sensitivity biosensors.  相似文献   

3.
The excitation of plasmonic Fano resonances leads to a dual advantage in nano-photonics, in terms of local field enhancement and far-field spectral selectivity. Nevertheless, a remarkable challenge related to the hybridization between bright and dark plasmonic modes, i.e. between the two elements cooperating to the Fano resonance generation, consists in the sub-wavelength activation of dark modes via near-field channel. In this regard, strongly coupled plasmonic nano-assemblies are ideal systems providing a highly efficient way towards their excitation. Here, we analyze two trimer nano-architectures supporting respectively electric and magnetic Fano resonances. The different approaches employed for describing the two systems highlighted the role that the near-field coupling and the LSPs de-phasing separately play in the Fano hybridization phenomena.  相似文献   

4.
We investigate the potential of plasmonic resonance in metal nanocomposite materials for the design of photonic crystal all optical switches by numerical methods. We study the absorption effect of the plasmonic resonance on the Fano resonances of one dimensional photonic crystal slabs covered by a metal nanocomposite layer. It is shown that the absorption reduces the contrast of the Fano resonances. However, for adequate metal nanoparticle concentrations it is possible to achieve both sufficiently sharp Fano resonance and strong Kerr nonlinearity, which provides a suitable condition for the design of high contrast and low threshold switches.  相似文献   

5.
Yang ZJ  Zhang ZS  Zhang LH  Li QQ  Hao ZH  Wang QQ 《Optics letters》2011,36(9):1542-1544
We theoretically investigate the plasmon coupling in metallic nanorod dimers. A pronounced dip is found in the extinction spectrum due to plasmonic Fano resonance, which is induced by destructive interference between the bright dipole plasmon of a short nanorod and the dark quadrupole plasmon of a long nanorod. This Fano interference can also be explained as the coupling between the bright and dark modes both supported by the whole dimer. The Fano resonance can be tuned by adjusting the spatial or spectral separation between two nanorods in the dimer.  相似文献   

6.
We propose a hybrid resonance architecture in which a plasmonic element is coupled to a silicon-on-insulator photonic crystal nanobeam cavity operating at telecom wavelengths. It benefits from the combined characteristics of the photonic cavity and the plasmonic element, and exploits the unique properties of Fano resonances resulting from interactions between the continuum and the localized cavity states. As confirmed through 3D time-domain simulations, a strong cavity mode damping by the plasmonic element offers mechanisms of controlling a probe signal propagating in the nanobeam. It makes possible to create optical switching devices and logic gates relying on any optical nonlinear effect.  相似文献   

7.
Based on the nonequilibrium Green' function method, the spin-dependent Fano effect through parallel-coupled double quantum dots has been investigated by taking account of both Rashba spin-orbit interaction and intradot Coulomb interaction. It is shown that the quantum interference through the bonding, antibonding states and through their Coulomb blockade counterparts may result in two Breit-Wigner resonances and two Fano resonances in the conductance spectra. Moreover, the Fano lineshape of the two spin components can be modulated by Rashba spin-orbit interaction when the magnetic flux is switched on.  相似文献   

8.
张兴坊  刘凤收  闫昕  梁兰菊  韦德全 《物理学报》2019,68(6):67301-067301
提出了一种同心椭圆柱-纳米管复合结构,该结构由金纳米管中内嵌椭圆形金柱构成,利用时域有限差分法分析了尺寸参数、周围环境及纳米管内核材料对该结构光学性质的影响.结果表明,调节椭圆柱芯的旋转角度可产生双重偶极-偶极Fano共振,其主要是由椭圆柱芯的纵向或横向偶极共振模式与纳米管的偶极成键和反成键模式杂化形成的超辐射成键模式和亚辐射成键模式之间的相互作用产生的,且共振特性可通过调节复合结构的尺寸参数控制,随椭圆柱长轴或短轴的增大而红移,随纳米管外径的增大或整体尺寸的减小而蓝移,当纳米管内径增大时高频Fano共振随着红移,而低频Fano共振先蓝移再红移,同时其对外界环境的变化不敏感,但对纳米管内核材料变化有着较好的响应.利用等离激元杂化理论对该现象进行了解释.这些结果可为构造其他类型的多波段Fano共振二维或三维纳米结构提供一种新的方式.  相似文献   

9.
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads.  相似文献   

10.
This review article focuses on the basic physics of LSPR modes, and how they can be observed. For dipolar modes, observation is rather straightforward. However, higher order modes often require the use of more advanced experimental conditions or dedicated spectroscopic techniques such as electron energy‐loss spectroscopy (EELS). Eventually, bespoke LSPR modes can be engineered when different cavities are brought together to interact, giving rise to super‐ or sub‐radiant modes, as well as Fano resonances, which in the right conditions can evolve into plasmonic induced transparency.  相似文献   

11.
We theoretically investigate the plasmonic coupling in heterogenous Al–Ag nanorod dimers. A pronounced Fano dip is found in the extinction spectrum produced by the destructive interference between the bright dipole mode from a short Al nanorod and the dark quadrupole mode from a long Ag nanorod nearby. This Fano resonance can be widely tuned in both wavelength and amplitude by varying the rod dimensions and end geometry, the separation distance and the local dielectric environment. The Al–Ag heterogeneous nanorod dimer shows a high sensitivity to the surrounding environment with a local surface plasmon resonance figure of merit of 7.0, which enables its promising applications in plasmonic sensing and detection.  相似文献   

12.
黄萌  陈栋  张利  周骏 《中国物理 B》2016,25(5):57303-057303
A gold dimer structure consisting of a notched triangle nanoslice and a rectangle nanorod is proposed to produce distinct Fano resonance. Owing to the coupling between the dipole plasmon mode of the nanorod and the dipole or quadrupole plasmon mode of the nanoslice, the extinction spectrum with a deep Fano dip is formed and can be well fitted by the Fano interference model for different geometry parameters. In addition, Fano resonance of the gold dimer nanostructure also intensely depends on the polarization direction of incident light. Moreover, Fano resonance of the triangle–rod trimer is also analyzed by adding another nanorod into the former dimer and exhibits the splitting of plasmonic resonant peak in high order coupling modes. The plasmonic hybridizations in these nanostructures have been analyzed for revealing the physical origin of the Fano resonance.  相似文献   

13.
We study the plasmonic properties of silver–silica–silver multilayer nanoshells using finite-difference time-domain methods. Silver is a weakly dissipating metal and is able to support higher order resonances compared to strongly dissipating metals like gold. We show that Fano resonances occur even in symmetric cases. Symmetry breaking via the introduction of core offset further enhances these Fano resonance peaks and leads to the appearance of higher order resonances. The optical properties of the multilayer nanoshells are explained using the plasmon hybridization theory and the results are compared to similar multilayer nanoshells with gold core and outer shell.  相似文献   

14.
Fano共振效应是一种具有非对称线型的共振散射现象,起源于共振过程和非共振过程的量子干涉效应。近年来,在等离子体纳米结构中Fano共振现象也被发现,并成为纳米光子学的一个研究热点。等离子体Fano共振通常具有较窄的光谱线宽,且不能直接与入射光耦合,只能局域在近场,强的近场局域特性可以获得巨大的表面电磁场增强。由于等离子体Fano共振独特的光学特性,已经被应用到单分子探测、高灵敏度传感、增强光谱、完美吸收、电磁诱导透明和慢光光子学器件等众多领域当中。  相似文献   

15.
In this study, gold nanodisk clusters in heptamer orientations as clusters were used to design a super-heptamer consisting of one central and six peripheral heptamers. We examined the position and movement of the plasmon and Fano resonances by sketching the spectral response of the superstructure for various nanodisk dimensions. The quality of the interference between the superradiant and subradiant plasmon resonance modes of the nanodisk clusters was found to depend strongly on the structural configuration and the refractive index of the environmental medium. We replaced the central heptamer with a nanodisk and probed the position of the Fano resonance by geometrically altering the nanodisk structure. Finally, the effect of the dielectric environment on the plasmon response of both of the studied structures was examined numerically and theoretically. The localized surface plasmon resonance sensitivity of the finite plasmonic structures to the presence of liquid substances was investigated and shown by plotting the linear figure of merit. The finite-difference time-domain method was used as a numerical tool to investigate the plasmon response of the structure.  相似文献   

16.
金属纳米材料因其表面等离子体共振特性而备受关注。异质结构的金属纳米材料的光学特性相比于同质结构因其材料的不同破坏了原有结构的对称性,对称性的破坏将引起光学性质的改变,相邻两个颗粒之间的相互作用会产生Fano共振。Fano共振是由异质纳米结构的表面等离子体共振耦合引起的,通过合理地调控表面等离子体共振的耦合,将进一步调控Fano共振的强度同时促使异质结构的电场增强特性和辐射特性得到进一步优化。受金银等贵金属的带间跃迁影响,金属铝纳米材料成为研究紫外-近紫外光区的表面等离子体共振研究最佳选择。采用有限时域差分方法研究了Ag-Al纳米球二聚体的光学特性。研究了Ag和Al纳米球组成的二聚体的吸收光谱与入射光偏振方向、纳米球半径、颗粒间距和介质折射率等几何结构及物理参数的关系,并深入讨论了二聚体的局域场分布规律;讨论了获取更高效的Fano共振光谱的方法。由于材料的对称性被破坏,异质二聚体的光学性质与同质二聚体明显不同,Ag-Al异质纳米球二聚体呈现出在紫外和可见光区的双Fano共振现象。Ag-Al二聚体表面等离子体互相耦合引起Fano共振从而导致表面等离子体的共振抑制和增强。研究结果对在紫外-可见光区的表面等离子体应用、纳米光学器件的设计与开发及基于表面等离子体共振的表面增强光谱、生物传感和检测研究等有一定参考价值。  相似文献   

17.
Fano resonances are well-known manifestations of the interference between a direct and an indirect ionization process. Here we report on a more complicated interference pattern observed in two-photon photoemission at the Si(100) surface. This two-dimensional Fano profile involves two discrete surface resonances which couple as initial and intermediate states to the silicon valence and conduction band, respectively. Tuning the photon energy across the surface resonance reveals asymmetric line profiles with pronounced destructive interference in the two-photon photoelectron intensities of both initial and intermediate states. The interference pattern is explained by an analytic extension of Fano's model to describe the coupling of two discrete states with two continua. This coupling strongly modifies the photoabsorption and is of general importance for light conversion in nanostructures and light-harvesting devices.  相似文献   

18.
陈颖  曹景刚  谢进朝  高新贝  许扬眉  李少华 《物理学报》2019,68(10):107302-107302
基于表面等离子激元在亚波长结构的传输特性,设计了一种含双挡板金属-电介质-金属波导耦合两个方形腔的结构.由F-P谐振腔产生的宽谱模式与两个方形谐振腔产生的两个窄谱模式发生干涉作用,形成了独立调谐的双重Fano共振,而且可以通过改变两个方形腔的大小及填充介质实现双重Fano共振的独立调谐.基于耦合模理论,定性分析了该结构产生双重Fano共振的机理.利用有限元仿真的方法,定量分析了结构参数对可独立调谐双重Fano共振和折射率传感特性的影响.结果表明,优化参数后该结构的灵敏度分别高达1020和1120 nm/RIU, FOM值分别高达3.59×10~5和1.17×10~6.该结构可为超快光开关、多功能高灵敏度传感器和慢光器件的光学集成提供有效的理论参考.  相似文献   

19.
The plasmonic properties of silver nanosphere clusters are investigated using the finite element and the plasmon hybridization methods. The nanoparticle clusters are found to exhibit multiple plasmon resonances with large induced electromagnetic field enhancements. For symmetric clusters, we show how group theory can be used to identify the microscopic nature of the plasmon resonances. For larger clusters, we show that narrow Fano resonances are frequently present in their optical spectra.  相似文献   

20.
In this paper, we have investigated the characteristics of an asymmetric shaped Fano line in a metal–insulator–metal (MIM) plasmonic waveguide side coupled to two resonating stub structures. The spectral properties of Fano resonance are quite distinct due to the destructive interference between a two propagating plasmon modes. Two structural parameters are carefully adjusted: physical separation between both the resonating stubs and length of resonating stubs. By tailoring the separation between both the resonating structures, coupling between both the plasmon modes is controlled, and hence asymmetric nature of Fano line can be shaped accordingly. Resonance condition of Fano line can be tuned by scaling the length of stubs. A strong red shift in resonating wavelength with varying degree of asymmetry is observed, when length of resonating structures is increased. The sharp resonant peak, due to an asymmetric shaped Fano resonance is generally accompanied by large dispersion that results in reduction of group velocity of light near Fano resonance. By controlling the coupling between resonating stub, or by scaling the length of lower resonating stub, large value of group index (ng = 75) and delay bandwidth product (DBP = 0.2533) is obtained. The structure can be modified to suit different applications in optical buffers, optical switches and nonlinear optics devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号