首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Strain engineering is a powerful approach for tuning various properties of functional materials. The influences of lattice strain on the Li-ion migration energy barrier of lithium-ions in layered LiCoO2 have been systemically studied using lattice dynamics simulations, analytical function and neural network method. We have identified two Li-ion migration paths, oxygen dumbbell hop (ODH), and tetrahedral site hop (TSH) with different concentrations of local defects. We found that Li-ion migration energy barriers increased with the increase of pressure for both ODH and TSH cases, while decreased significantly with applied tensile uniaxial c-axis strain for ODH and TSH cases or compressive in-plane strain for TSH case. Our work provides the complete strain-map for enhancing the diffusivity of Li-ion in LiCoO2, and therefore, indicates a new way to achieve better rate performance through strain engineering.  相似文献   

2.
We have studied the formation energy of the simplest oxygen defects in alpha-quartz, the oxygen vacancy and interstitial, by an ab initio approach based on density functional theory in the local density approximation. We have determined the formation energies and entropies and the migration paths and energies. From our results we can conclude that oxygen diffuses in quartz by an interstitial mechanism: the interstitial has a dumbbell structure; one of the constitutive atoms jumps towards a neighboring oxygen site. The activation energy amounts to 4.7 eV in the intrinsic regime and 2.8 eV in the extrinsic regime.  相似文献   

3.
Comprehensive first-principle calculations on strained rutile TiO2(110) indicate that the formation energy of different types of oxygen vacancies depends on the external strain. For the unstrained state, the energetically favorable oxygen vacancy (EFOV) appears on the bridging site of the first layer; when 3% tensile strain along [11[over ]0] is applied, EFOV moves to the in-plane site, while 2% compressive strain along either [001] or [11[over ]0] shifts EFOV to the subbridging site. We therefore suggest that the distribution of oxygen vacancies can be engineered by external strain, which may help to improve the applications of a TiO2 surface where oxygen vacancy plays an important role.  相似文献   

4.
基于k·p微扰法研究单轴[110]应力作用下硅的导带结构,获得单轴[110]应力硅的导带底能量及电子有效质量.在此基础上,考虑电子谷间、谷内及电离杂质散射,采用弛豫时间近似计算单轴[110]应力硅沿不同晶向的电子迁移率.结果表明:单轴[110]应力作用下硅的电子迁移率具有明显的各向异性.在[001]、[110]及[110]输运晶向中,张应力作用下电子沿[110]晶向输运时迁移率有较大的增强,由未受应力时的1 450 cm2·Vs-1提高到2 GPa应力作用下的2 500 cm2·Vs-1.迁移率增强的主要原因是电子有效质量的减小,而应力作用下硅导带能谷分裂导致的谷间散射几率的减小对电子迁移率的影响并不显著.  相似文献   

5.
Utilizing a six-band k.p valence band calculations that considered a strained perturbation Hamiltonian, uniaxial stress-induced valence band structure parameters for Ge such as band edge energy shift, split, and effective mass were quantitatively evaluated. Based on these valence band parameters, the dependence of hole mobility on uniaxial stress (direction, type, and magnitude) and hole transport direction was theoretical studied. The results show that the hole mobility had a strong dependence on the transport direction and uniaxial stress. The hole mobility enhancement can be found for all transport directions and uniaxial stess configurations, and the hole transport along the [110] direction under the uniaxial [110] compressive stress had the highest mobility compared to other transport directions and stress configurations.  相似文献   

6.
刘汝霖  方粮  郝跃  池雅庆 《物理学报》2018,67(17):176101-176101
基于密度泛函理论的爬坡弹性带方法,对金红石相二氧化钛晶体中钛间隙、钛空位、氧间隙、氧空位4种本征缺陷的扩散特征进行了研究.对比4种本征缺陷在晶格内部沿不同扩散路径的过渡态势垒后发现,缺陷扩散过程呈现出明显的各向异性.其中,钛间隙和氧间隙沿[001]方向具有最小的扩散势垒路径,激活能分别为0.505 eV和0.859 eV;氧空位和钛空位的势垒最小的扩散路径分别沿[110]方向和[111]方向,激活能分别为0.735 eV和2.375 eV.  相似文献   

7.
何燕  周刚  刘艳侠  王皞  徐东生  杨锐 《物理学报》2018,67(5):50203-050203
六角金属由于其各向异性等特点,在塑性变形等过程中容易产生形状和构型都相对复杂的点缺陷团簇.这些团簇之间及其与运动位错等缺陷的相互作用直接影响材料的物理和力学性能.然而对相关问题的原子尺度、尤其是空位团簇的演化和微孔洞的形成乃至裂纹形核扩展等的理解还不全面.本文采用激发弛豫算法结合第一原理及原子间作用势,系统考察了钛中的空位团簇构型及不同构型间的相互转变,给出了不同尺寸空位团簇的稳定和亚稳构型、空位团簇合并分解和迁移的激发能垒等关键参数,发现较小的空位团簇形成稳定构型,较大的空位团簇呈现出空间对称分布趋势进而形成微孔洞;采用高通量分子动力学模拟系统研究了不同尺寸的空位团簇在拉应力作用下对变形过程的影响,发现这些空位团簇可以形成层错,并对微裂纹的形核产生影响.  相似文献   

8.
Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications.  相似文献   

9.
张红  温述龙  潘敏  黄整  赵勇  刘翔  谌继明 《中国物理 B》2016,25(5):56102-056102
Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms(SIAs) as well as the migration energy of tungsten(W) atoms. It was found that the difference of the 110 and 111 formation energies is 0.05–0.3 e V. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, 110 SIAs are more likely to exist, 111 SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for selfinterstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material.  相似文献   

10.
Oxygen vacancy formation and migration in La0.9 Sr0.1 Ga0.8 Mg0.2O3δ (LSGM) with various crystal symmetries (cubic, rhombohedral, orthorhombic, and monoclinic) are studied by employing first-principles calculations based on density functional theory (DFT). It is shown that the cubic LSGM has the smallest band gap, oxygen vacancy formation energy, and migration barrier, while the other three structures give rise to much larger values for these quantities, implying the best oxygen ion conductivity of the cubic LSGM among the four crystal structures. In our calculations, one oxygen vacancy migration pathway is considered in the cubic and rhombohedral structures due to all the oxygen sites being equivalent in them, while two vacancy migration pathways with different migration barriers are found in the orthorhombic and monoclinic symmetries owing to the existence of nonequivalent O1 and O2 oxygen sites. The migration energies along the migration pathway linking the two O2 sites are obviously lower than those along the pathway linking the O1 and O2 sites. Considering the phase transitions at high temperatures, the results obtained in this paper can not only explain the experimentally observed different behaviours of the oxygen ionic conductivity of LSGM with different symmetries, but also predict the rational crystal structures of LSGM for solid oxide fuel cell applications.  相似文献   

11.
Combining molecular dynamics (MD) simulation with modified analytic embedded-atom method (MAEAM), the formation, migration and activation energies of the point defects for six-kind migration mechanisms in B2-type TaW alloy have been investigated. The results showed that the anti-site defects TaW and WTa were easier to form than Ta and W vacancies owing to their lower formation energies. Comparing the migration and activation energies needed for six-kind migration mechanisms of a Ta (or W) vacancy, we found that one nearest-neighbour jump (1NNJ) was the most favourable because of its lowest migration and activation energies, but it would lead to a disorder in the alloy. One next-nearest-neighbour jump (1NNNJ) and one third-nearest-neighbour jump (1TNNJ) could maintain the ordered property of the alloy but required higher migration and activation energies. So the 1NNNJ and 1TNNJ should be replaced by straight [100] six nearest-neighbor cyclic jumps (S[100]6NNCJ) (especially) or bent [100] six nearest-neighbour cyclic jumps (B[100]6NNCJ) and [110] six nearest-neighbor cyclic jumps ([110]6NNCJ), respectively.  相似文献   

12.
Atomistic computer simulation with embedded atom method (EAM) interatomic forces was used to study the structure of surface steps on the {111} unreconstructed surface in fcc metallic materials. The energetics and local atomic relaxation behavior of ledges parallel to the 110 direction were studied using a potential describing lattice properties of Au. The vacancy formation energies in the stepped surfaces was also studied, and it was found that the energy of formation of a vacancy in a terrace is the same as that in the perfect unstepped surface. This value is 30% lower than that of the bulk. The vacancy formation energy in the ledge is reduced by a factor of two with respect to that of the terraces. The structure of the “up ledge” (A step) is different from the “down ledge” (B step). These differences do not significantly affect the energy of the ledges, although they do affect the vacancy formation energies in sites in the second surface layer near the ledge. The implications of the results for the formation of kinks and the general structure of high index surfaces are discussed.  相似文献   

13.
靳钊  乔丽萍  郭晨  王江安  刘策 《物理学报》2013,62(5):58501-058501
单轴应变Si材料电子电导有效质量是理解其电子迁移率增强的关键因素之一, 对其深入研究具有重要的理论意义和实用价值. 本文从Schrödinger方程出发, 将应力场考虑进来, 建立了单轴应变Si材料导带E-k解析模型. 并在此基础上, 最终建立了单轴应变Si(001)任意晶向电子电导率有效质量与应力强度和应力类型的关系模型. 本文的研究结果表明: 1) 单轴应力致电子迁移率增强的应力类型应选择张应力. 2) 单轴张应力情况下, 仅从电子电导有效质量角度考虑, [110]/(001)晶向与[100]/(001)晶向均可. 但考虑到态密度有效质量的因素, 应选择[110]/(001)晶向. 3) 沿(001)晶面上[110]晶向施加单轴张应力时, 若想进一步提高电子迁移率, 应选取[100]晶向为器件沟道方向. 以上结论可为应变Si nMOS器件性能增强的研究及导电沟道的应力与晶向设计提供重要理论依据. 关键词: 单轴应变 E-k关系')" href="#">E-k关系 电导有效质量  相似文献   

14.
文敏儒  王崇愚 《中国物理 B》2017,26(9):93106-093106
Using first-principles density functional calculations, lattice stability of γ-Ni under [001], [110], and [111] uniaxial tensions and the effect of alloying elements Co and Re on the uniaxial tensile behavior of γ-Ni were studied in this paper.With elastic constants and phonon spectra calculations, we examined the mechanical stability and phonon stability of Ni during the uniaxial tensions along the three characteristic directions. The results show that the mechanical stability and phonon stability of a lattice occurs before the maximum stress–strain point under the [001] and [111] tension, respectively.The effects of Co and Re on the ideal tensile strength of γ-Ni show a significant directivity: Co and Re have little effect on the stresses in [001] and [111] directions, but increases the ideal strength of the system in the weakest uniaxial tensile direction. Moreover, the strengthening effect of Re is significantly better than that of Co. By further analyzing electronic structure, it is found that the effect of alloying elements on the uniaxial tensile behavior of γ-Ni comes from their interactions with host atoms.  相似文献   

15.
Abstract

Irradiation with high-energy particles induces athermal migration of point defects, which affects defect reactions at low temperatures where thermal migration is negligible. We conducted molecular dynamics simulations of vacancy migration in iron and copper driven by recoil energies under electron irradiation in a high-voltage electron microscope. Minimum kinetic energy required for migration was about 0.8 and 1.0 eV in iron and copper at 20 K, which was slightly higher than the activation energy for vacancy migration. Around the minimum energy, the migration succeeded only when a first nearest neighbour (1NN) atom received the kinetic energy towards the vacancy. The migration was induced by higher kinetic energies even with larger deflection angles. Above several electron-volts and a few 10s of electron-volts, vacancies migrated directly to 2NN and 3NN sites, respectively. Vacancy migration had complicated directional dependence at higher kinetic energies through multiple collisions and replacement of atoms. The probability of vacancy migration increased with the kinetic energy and remained around 0.3–0.5 jumps per recoil event for 20–100 eV. At higher temperatures, thermal energies slightly increased the probability for kinetic energies less than 1.5 eV. The cross section of vacancy migration was 3040 and 2940 barns for 1NN atoms in iron and copper under irradiation with 1.25 MV electrons at 20 K: the previous result was overestimated by about five times.  相似文献   

16.
Diffusion of Cu atoms on a strained Cu (1 1 1) surface was studied by molecular dynamic simulation using an EAM potential. The anisotropic diffusion behaviour is found when the uniaxial strain is imposed on the surface, which does not exist under the biaxial strain. The migration of the adatom is suppressed along the tensile strain direction. The results suggest that different island morphology can be obtained by controlling anisotropic diffusion of adatoms on the strained surfaces during film growth.  相似文献   

17.
Abstract

The structures of point defect clusters of both interstitial and vacancy type were examined by computer simulation using molecular dynamics and molecular statics with the DYNAMO code (Daw, Foiles and Baskes [6]). The code implements an isotropic potential of embedded atom method (EAM) developed by Daw and Baskes [5]. Interstitial clusters relax to either the immobile mixture of <100> dumbbell and bcc interstitials or a mobile platelet of parallel <110> interstitials. The latter cluster moves along <110> directions. A tri-vacancy relaxes to an un-collapsed stacking fault tetrahedron (sft) of Damask-Dienes type (3v-sft) containing a central atom that vibrates with a large amplitude. A hexa-vacancy relaxes to a stacking fault tetrahedron the structure of which fluctuates between a sft and void. Larger vacancy clusters are stable as a combination of sft and 3v-sft. In these vacancy clusters, atoms show significant vibration with large amplitude. Voids form only with the inclusion of gas-atoms into vacancy clusters.  相似文献   

18.
Structures of several symmetrical tilt grain boundaries (GBs) with different tilt axes in Cu and Al and their interaction with vacancies and interstitials are studied using atomistic computer simulations with embedded-atom potentials. The lowest defect formation energy in a GB is found to correlate with the GB energy in both Cu and Al. Importantly, vacancies and self-interstitials in GBs have comparable formation energies, suggesting that both defects are equally important for GB diffusion and other properties. Vacancies in GBs can be either localized at certain sites or be delocalized over several sites. Some GB sites do not support a stable vacancy at all. Self-interstitial atoms can occupy relatively open interatomic positions, form split dumbbell configurations, or give rise to highly delocalized displacement zones. These structural forms of point defects have been observed across the whole set of twelve GBs in Cu and six GBs in Al studied in this paper as well as in our previous work [Interface Science 11, 131–148 (2003)]. It is suggested that these structural forms are general to all GBs in fcc metals. They can be explained by the existence of internal stresses and alternating tension and compression regions in the GB core.  相似文献   

19.
代月花  潘志勇  陈真  王菲菲  李宁  金波  李晓风 《物理学报》2016,65(7):73101-073101
采用基于密度泛函理论的第一性原理方法, 研究了基于HfO2的阻变存储器中Ag 导电细丝浓度以及方向性. 通过计算Ag杂质5种方向模型的分波电荷态密度等势面图、形成能、 迁移势垒和分波电荷态密度最高等势面值, 发现[-111]方向最有利于Ag导电细丝的形成, 这对器件的开启电压、形成电压和开关比有很大影响. 本文基于最佳的[-111]导电细丝方向, 设计了4 种Ag 浓度结构. 计算4种Ag浓度结构的分波电荷态密度等势面图, 得出Ag浓度低于4.00 at.% 时晶胞结构中无导电细丝形成且无阻变现象. 当Ag浓度从4.00 at.%增加到4.95 at.% 时, 晶胞结构中发现有导电细丝形成, 表明Ag浓度高于4.00 at.%时, 晶胞中可以发生阻变现象. 然而, 通过进一步对比计算这两种晶胞结构中Ag的形成能、分波电荷态密度最高等势面值、总态密度与Ag的投影态密度发现, Ag浓度越大, 导电细丝却不稳定, 并且不利于提高阻变存储器的开关比. 本文的研究结果可为改善基于HfO2的阻变存储器的性能提供一定理论指导.  相似文献   

20.
The present work has investigated the tensile mechanical behavior of the skutterudite CoSb3 single-crystal in the presence of antimony vacancies, since the antimony atoms in CoSb3 are active and are usually easy to lose in practice. The molecular dynamics simulation method is employed. The vacancy atoms, whose fraction is limited up to 5%, are chosen randomly. The virtual uniaxial tension is carried out by strain controlling along a principal crystallographic direction at 300 K. The specimens with vacancies show similar stress–strain response features to there of the perfect crystal. However, the effective Young's modulus decreases linearly with the increase of the vacancy content, and the ultimate strength drops substantially from no vacancy to even a small vacancy fraction. Temperature dependence of the simulation results is also considered. Both Young's modulus and the ultimate strength exhibit an approximately linear reduction with increasing temperature for a specific vacancy fraction, and moreover, the reduction rate is comparable for different vacancy fractions. The Vacancy distribution effect is briefly discussed as well. As the vacancy concentration becomes uniform, the ultimate strength of the material would be promoted significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号