首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photo-orientational phenomena have been studied for two comb-shaped cholesteric copolyacrylates containing azobenzene side groups. CopolymerI contains nematogenic phenyl benzoate groups and photosensitive chiral menthyl-containing azobenzene side groups. CopolymerII is composed of nematogenic phenyl benzoate groups, photosensitive cyanoazobenzene groups and chiral photochromic benzylidene-p-methan-3-one fragments. Under the action of polarized Ar+ laser light (488 nm), orientation of the side groups of the copolymers takes place, and this orientation is perpendicular to the vector of the electric field of the incident light. This process shows a co-operative character; that is, it involves both photosensitive azobenzene and phenyl benzoate groups. The kinetics of growth of the photoinduced orientational order parameter were studied as a function of film thickness, incident light intensity, and preliminary UV irradiation. For the planar oriented films of the copolymers, irradiation with polarized light leads to the development of photoinduced birefringence Δn; maximum values of Δn reach 0.01. The photo-optical properties of copolymersI and II are compared. Such materials may be used for 'dual' data recording by varying the helix pitch, selective light reflection maximum, and photoinduced birefringence or linear dichroism.  相似文献   

2.
Orientation and reorientation processes that occur in nematic and cholesteric LC polymer systems under irradiation with plane-polarized light are studied. A copolyacrylate containing phenyl benzoate and azobenzene side groups is synthesized as a nematic polymer; the cholesteric mixture is prepared via doping of the nematic copolymer with the chiral dopant, the derivative of D-isosorbide. Thin layers of the azobenzene-containing photoorientant SD-1 are first used as orienting substrates for polymer liquid crystals. Thin layers of the copolymer and of the mixture are spin-coated on the substrate after irradiation of the photoorientant layer with polarized light. It is shown that after annealing phenyl benzoate and azobenzene side groups of the nematic copolymer orient strictly along the direction of orientation of surface molecules, whereas in the case of the cholesteric mixture, a partial formation of the helical structure is observed. It is demonstrated that all the systems under examination can experience the repeated cyclic reorientation of the cooperative type under irradiation and subsequent annealing of the films.  相似文献   

3.
A new low molar mass chiral-photochromic dopant was synthesized. It contains a menthyl fragment as the chiral group and an azobenzene group, capable of E - Z photoisomerization, as the photochromic component. The substance obtained was used as a chiral dopant in mixtures with a comb-shaped cholesteric acrylic copolymer with menthyl-containing chiral side groups and phenyl benzoate nematogenic side groups. Such mixtures form a cholesteric mesophase. The chiral dopant led to an additional twisting of the cholesteric helix, i.e. to a shift of the selective light reflection peak to a shorter wavelength region of the spectrum. The initial copolymer gave selective light reflection in the spectral range 1200-1400 nm; the mixture containing 3.5 mol % of chiral-photochromic dopant reflects light with λmax~ 850 nm. The action of light with λir~ 440 nm results in E - Z isomerization of the azo-group of the chiral dopant and in a shift of the selective light reflection peak to the long wavelength region of the spectrum (amplitude of shift = 30 nm). This is explained by a lower helical twisting power of the Z-isomer of the chiral dopant. This process is thermally reversible: annealing of irradiated films leads to a back shift of the selective light reflection peak to the short wavelength region of the spectrum due to Z - E isomerization. Kinetic features of the direct and backward processes of isomerization were studied: it was shown, that mixtures of the chiralphotochromic azobenzene-containing dopant with cholesteric polymers give new possibilities for the creation of polymer materials with a reversibly regulated helical supramolecular structure which determines their optical properties.  相似文献   

4.
Infrared spectroscopy is used to study simultaneously the orientational behaviour of different segments of dye containing liquid-crystalline side group copolymers in sandwich type films of about 2 μm thickness. Under continuous irradiation with polarized light above and below Tg of the polymers both azobenzene and phenyl benzoate side groups reorient preferentially normal to the film plane leading to a strongly biaxial orientation distribution. The analysis of the kinetics reveals that the reorientation is essentially a mono-exponential process with an additional faster process only found for the azobenzene dye and assigned to the initial trans to cis isomerization step. Investigation of an isotropic copolymer system containing azobenzene in the side groups shows that an anisotropy can be induced through irradiation with polarized light that is strongly dependent on temperature.  相似文献   

5.
Photoorientation and reorientation processes induced by illumination of the samples with oppositely directed polarized light and by the thermal treatment were studied for the films of triblock copolymer pAzo10‐b‐pPhM80‐b‐pAzo10 consisting of a nematic phenyl benzoate сentral sub‐block (PhM, DP = 80) with two terminal smectic azobenzene sub‐blocks (Azo, DP = 10). For amorphized films of triblock copolymer, illumination with polarized light (λ = 546 nm) is shown to be by orientation of only Azo‐containing groups, but upon following annealing of the film, PhM groups are adjusted to the orientation of Azo fragments. It was found, that the subsequent illumination of the block copolymer sample with oppositely directed polarized light changes the orientation of azobenzene groups, while the orientation of phenyl benzoate groups is remained unchanged. Thus, the cyclic illumination of the triblock copolymer samples by the linear polarized light and subsequent thermal treatment make it possible to control and fix orientation of azobenzene and phenyl benzoate groups located in different sub‐blocks in the desired and independent manner. The comparison of these results with the data on random p(Azo7ran‐PhM30) copolymer of the similar composition revealed, that in the random copolymer, both Azo and PhM mesogenic groups are involved in the orientational cooperative process regardless of films process treatment. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1602–1611  相似文献   

6.
Photo‐chemically tunable photonic band gap materials are prepared by infiltration of liquid crystal polymers having azobenzene groups into voids of SiO2 inverse opal films. Linearly polarized (LP) light irradiation results in transformation from a random to an anisotropic molecular orientation of azobenzene side chains in the voids of the SiO2 inverse opal film, leading to the reversible and stable shift of the reflection peak to longer wavelength more than 15 nm. To improve switching properties, we use copolymers of azobenzene monomer and tolane monomer, which have higher birefringence, as infiltration materials into the voids. The azobenzene‐tolane copolymers are found to show higher birefringence than azobenzene homopolymers by the LP light irradiation at higher temperature. Consequently, the reflection band of the SiO2 inverse opal film infiltrated with the azobenzene‐tolane copolymer can be shifted to longer wavelength region more than 55 nm by the irradiation of LP light. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1981–1990, 2009  相似文献   

7.
Two photosensitive chiral liquid crystalline azobenzene‐containing polymethacrylates having different length of flexible spacer connecting chromophores with backbone were synthesized and their phase behavior and photo‐optical properties were studied. Both polymers consist of lateral methyl substituents in ortho‐position of azobenzene chromophores providing high photosensitivity even in red spectral region as well as high thermal stability of photoinduced Z‐form of azobenzene chromophores. It is shown, that smectic phase (SmA*) formation in films of polymer with longer spacer predetermines its quite unusual spectral response to UV and subsequent visible light actions. The SmA* phase promotes spontaneous homeotropic alignment of azobenzene chromophores in polymer films. UV‐irradiation induces not only E‐Z isomerization but also results in disruption of homeotropic alignment, whereas subsequent visible light action enables to obtain films with the low degree of chromophores orientation. The photo‐orientation phenomena under the action of polarized light of different wavelength on polymer films were studied. The possibility of using red polarized light of moderate intensity for optical photorecording on polymer films is demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2962–2970  相似文献   

8.
New chiral photochromic cholesteric comb-shaped acrylic copolymers and low molecular mass dopants containing azobenzene photosensitive fragments and chiral groups based on menthol and menthone were synthesized. For the copolymers and their mixtures with low molecular mass dopants, the phase behaviour and optical properties were studied. Under irradiation with UV and visible light, the untwisting of cholesteric helix takes place, and the selective light reflection maximum is shifted to the long wavelength spectral region. This shift is related to the E-Z isomerization of the azobenzene chiral groups. For the copolymers and mixtures of the cholesteric polymer with the menthyl-containing dopant, this process is thermally reversible. The specific features of the kinetics of the forward and the reverse thermal processes were characterized. It was demonstrated, that the copolymers and mixtures of the cholesteric copolymer with the menthyl-containing dopant may be used for coloured reversible recording of optical information. For such materials, their resistance with respect to the repeated 'recording-erasing' cycles was tested, and the fatigue resistance was shown to be rather high.  相似文献   

9.
A new methacrylate containing a 2,6‐diacylaminopyridine (DAP) group was synthesized and polymerized via RAFT polymerization to prepare homopolymethacrylates (PDAP) and diblock copolymers combined with a poly(methyl methacrylate) block (PMMA‐b‐PDAP). These polymers can be easily complexed with azobenzene chromophores having thymine (tAZO) or carboxylic groups with a dendritic structure (dAZO), which can form either three or two hydrogen bonds with the DAP groups, respectively. The supramolecular polymers were characterized by spectroscopic techniques, optical microscopy, TGA, and DSC. The supramolecular polymers and block copolymers with dAZO exhibited mesomorphic properties meanwhile with tAZO are amorphous materials. The response of the supramolecular polymers to irradiation with linearly polarized light was also investigated founding that stable optical anisotropy can be photoinduced in all the materials although higher values of birefringence and dichroism were obtained in polymers containing the dendrimeric chromophore dAZO. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3173–3184  相似文献   

10.
《Liquid crystals》2000,27(1):57-62
A number of terpolymers were synthesized by copolymerization of nematogenic, chiral and photochromic monomers with different contents of spiropyran photosensitive side groups. The synthesized copolymers possess selective light reflection in the visible region of the spectrum. Action of UV light on planarly-oriented films of the copolymers leads to the formation of the merocyanine form of the dye with a maximum of absorbance coinciding with the selective light reflection peak. The 'degeneration' of the selective light reflection is observed during this process. It was shown that such types of material can be used for reversible information storage; the principal scheme for the processes of optical data recording and reading is suggested.  相似文献   

11.
A number of terpolymers were synthesized by copolymerization of nematogenic, chiral and photochromic monomers with different contents of spiropyran photosensitive side groups. The synthesized copolymers possess selective light reflection in the visible region of the spectrum. Action of UV light on planarly-oriented films of the copolymers leads to the formation of the merocyanine form of the dye with a maximum of absorbance coinciding with the selective light reflection peak. The 'degeneration' of the selective light reflection is observed during this process. It was shown that such types of material can be used for reversible information storage; the principal scheme for the processes of optical data recording and reading is suggested.  相似文献   

12.
Symmetric photosensitive fully liquid-crystalline triblock copolymers are synthesized by pseudo-living reversible addition-fragmentation chain-transfer radical polymerization for the first time. The polymerization of 3-[methyl(phenyl)amino]propyl acrylate mediated by three different symmetric trithiocarbonates with various leaving groups is studied. It is shown that reversible addition-fragmentation chain-transfer agents make it possible to synthesize narrowly dispersed homopolymers with controlled molecular masses. Poly[(3-[methyl(phenyl)amino]propyl acrylate) trithiocarbonates] are used as polymeric reversible addition-fragmentation chain-transfer agents in the block copolymerization of the phenyl benzoate acrylic monomer. The chemical modification of block copolymers yields desirable photosensitive triblock copolymers containing azobenzene groups. The effect of the molecular structure of triblock copolymers on their phase behavior and thermal properties is examined.  相似文献   

13.
A photosensitive fluorescent cholesteric guest-host mixture consisting of a nematic polyacrylate, a chiral, photochromic dopant sensitive to UV light, and a fluorescent dopant was prepared. The nematic polyacrylate contains 4-phenyl-4'-methoxybenzoate nematogenic side groups and photochromic 4-cyanoazobenzene side groups. The chiral-photochromic dopant formed by isosorbide and cinnamic acid is capable of E-Z photoisomerization and [2 + 2] photo-cycloaddition under light irradiation. The planarly oriented films possess a selective light reflection in the visible spectral region coinciding with the emission peak of the fluorescent dopant. The fluorescence emitted by the planarly oriented films of the mixture is strongly circularly polarized and characterized by a large value of the dis-symmetry factor. At temperatures below glass transition (T(g)) the polarized light action of an Ar(+) laser (488 nm) leads to the photo-orientation of the azobenzene fragments resulting in a strong and reversible disruption of the selective reflection and a decrease of the dis-symmetry factor of fluorescence. UV irradiation leads to E-Z isomerization and/or [2 + 2] cycloaddition of the chiral-photochromic dopant, causing an irreversible shift of the maximum of the dis-symmetry factor to a long-wavelength spectral region under subsequent annealing at temperatures higher than T(g). Such multifunctional glass-forming guest-host mixtures combining photosensitive and fluorescent properties with the unique optical properties of cholesteric liquid crystals can be considered as promising material for optical data processing technologies and photonic applications.  相似文献   

14.
The photo-optical behaviour of two series of chiral photochromic acrylic copolymers with a chiral nematic phase has been studied. These copolymers contain identical chiral photochromic units, but have different structures of the phenyl benzoate mesogenic side groups which are responsible for the development of LC phases. This approach allowed us to examine specific features of the photo-optical behaviour of the copolymers as a function of the nature of the LC 'matrix' in which the cholesteric phase was induced. The action of UV irradiation was shown to lead to the E-Z isomerization of the chiral side groups and, as a consequence, to untwisting of the cholesteric helix of the copolymers. For copolymers of both series, the effective quantum yields of this photochemical process were calculated. In the case of copolymers in which the cholesteric mesophase is induced in a smectogenic matrix, the corresponding values of the quantum yield are lower and depend slightly on temperature. A plausible explanation of the above phenomena is suggested.  相似文献   

15.
The photoinduced anisotropy in a series of azomethacrylate block copolymers with different molecular weights and azo contents has been investigated under several irradiation conditions. Depending on molecular weight and composition, different microstructures (disordered, lamellar, spherical) appear, due to block microsegregation. Measurements of birefringence (Δn) induced with linearly polarised 488 nm light show that the highest (and stable) ΔnN values (birefringence normalised to the azo content) are achieved in copolymers with a lamellar structure. Lower ΔnN are obtained in the copolymers in which azobenzene units segregate to nano spheres and the lowest (and less stable) ΔnN values, appear in disordered systems not showing any defined microstructure. Besides, higher ΔnN is obtained in the copolymers with larger molecular weight of the poly (methyl methacrylate) and the azo polymer blocks, both in the microspheres segregated polymers as well as in those without a clear microstructure. This behaviour is consistent with that of the photoinduced order of azobenzene units obtained from dichroism measurements. Irradiation temperature (from 30 to 90 °C) and light power (from 100 to 500 mW/cm2) also influence the photoinduced response. Photoinduced ΔnN growth rate is faster when both temperature and irradiation power increase. Furthermore, birefringence is only induced at temperatures up to 90 °C, the maximum value being obtained at about 70 °C. No clear dependence of the final ΔnN value with light power has been found.  相似文献   

16.
Photochromic acrylates containing both biphenylene and spiro-oxazine moieties with a chiral substituent and the related polymers were prepared and yielded photochromic chiral liquid crystalline systems. The photochromic acrylates containing both an undecamethylene group and a (2S, 3S)-2-chloro-3-methylpentanoyloxy group (A11SOP) or a (-)-menthoxyacetoxy group (A11SOM) gave a supercooled mesophase; the latter reflected right-handed visible light (blue colour) at room temperature. On the other hand, the photochromic acrylate containing both the (R)-(-)-2-methylpropylene and (2S, 3S)-2-chloro-3-methylpentanoyloxy groups (A3SOP) showed no mesophase. The related homopolymers, PA11SOP and PA11SOM, did not exhibit mesophases because of steric hindrance between the side groups of the polymers. However, only PA11SOM exhibited shear-induced birefringence under 100-104°C. Several copolymers consisting of the nematogenic monomer, 4-[4-(6-acryloyloxyhexyloxy)benzoyloxy]benzonitrile (A6CN), and A11SOP or A11SOM possessed a smectic phase due to reduction of the steric hindrance between the potentially smectogenic A11SOP or A11SOM moieties.  相似文献   

17.
A photoresponsive azobenzene molecule DCAZO2 with two cholesteryl groups linked to both sides of the azobenzene group is doped in a mixture of nematic liquid crystal E7 and chiral dopant S811 (61.9 wt% E7, 36.1 wt% S811 and 2.0 wt% DCAZO2). Cooled from isotropic phase to 33.0°C, chiral nematic liquid crystal (N*LC) was formed in the sample and then the temperature was kept unchanged at 33.0°C. UV light irradiation induces the transcis photoisomerisation and thus an obvious phase transition. When the azobenzene groups isomerise to a cis-saturated state, the UV light was turned off and the white light was turned on at the same time. The bent-shaped cis isomer then turns back to the planar trans isomer gradually. A blue–green platelet texture representing cubic blue phase (BP) was observed and the size of the platelets was increased along with the cistrans isomerisation. UV–vis absorption spectra indicate that the photoinduced BP exists when the isomerisation degree is between 79% and 18%, and further cistrans isomerisation change BP back into N*LC. The large geometric structure of the cholesteryl groups and the large bent angle θ of the cis isomer are supposed to be responsible for the interesting result.  相似文献   

18.
《Liquid crystals》1999,26(12):1749-1765
A new approach for the preparation of photosensitive materials for coloured data recording and storage is advanced. This approach involves the synthesis of copolymers containing nematogenic and combined (-)-arylidene-p-menthan-3-one chiral photochromic fragments in one monomer unit. The conditions for the formation of an LC phase in the chiral photochromic homopolymers as a function of the structure of the side groups have been identified; for a new series of copolymers, the effect of their composition on the phase behaviour and photooptical properties is considered. Planarly oriented films of the copolymers show selective light reflection in the UV, visible, and near IR spectral regions. The photochemical behaviour of the homopolymers and copolymers in dilute solution and as films has been studied. In these systems, under UV radiation, the E-Z isomerization of the (-)-arylidene-p-menthan-3-one fragment is the dominating process. The kinetic features of the photoprocess are revealed, and the effective quantum yields calculated. The isomerization process leads to dramatic changes in the anisometry of the chiral side groups, and the helical twisting power decreases. Therefore, as a result of UV radiation of films of the copolymers, the selective light reflection peak is shifted to a longer wavelength spectral region. This means that such polymeric films can be considered as promising materials for colour data recording and as storage media.  相似文献   

19.
Spontaneous mirror‐symmetry breaking is a fundamental process for development of chirality in natural and in artificial self‐assembled systems. A series of triple chain azobenzene based rod‐like compounds is investigated that show mirror‐symmetry breaking in an isotropic liquid occurring adjacent to a lamellar LC phase. The transition between the lamellar phase and the symmetry‐broken liquid is affected by trans cis photoisomerization, which allows a fast and reversible photoinduced switching between chiral and achiral states with non‐polarized light.  相似文献   

20.
We demonstrate reversible photoinduced in situ reorientation of low molecular mass liquid crystals (LCs) by means of photoaddressable polymers (PAPs). These polymers contain mesogenic azobenzene side chains optimized to reorient cooperatively and effectively upon illumination with polarized light. Various low molecular mass LCs were introduced between two PAP layers and these sandwich devices were tested with respect to stability and reversibility of photoinduced orientation. Dissolution of the PAP layer by the low molecular mass LC was observed for several material combinations and systematically investigated. Different anisotropic dyes were added as fluorescence markers in order to monitor the photoinduced LC orientation. With an optimized material combination, more than 10 reversible reorientation processes could be realized with polarized light of either 514 or 405 nm wavelength, without any reduction in alignment quality. Further, microscopic polarized fluorescence patterns could be produced and erased within short exposure times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号