首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the influence of polymer network liquid crystal alignment on optical and electro-optical properties. Composite alignment (parallel/homeotropic) was investigated in comparison with symmetric parallel/parallel and homeotropic/homeotropic alignments. The applied voltage leads to a reflective wavelength shift towards low wavelengths according to two modes in the case of symmetric planar alignment. Depending on polymerization conditions, a band broadening can be obtained, but a total reversibility of the optical properties is not recovered after application of a high voltage to the samples. The layer thickness appears to be a fundamental parameter in the case of a hybrid-aligned active layer and a wide band is obtained after measurements ( I - V ) using increasing voltages.  相似文献   

2.
A continuum model is employed to study systematically the optical response of hybrid-aligned nematic (HAN) liquid crystal cells under the application of an external electric field. The influence of the flexoelectric effect is discussed for a large range of anchoring strengths at the homeotropic alignment layer. It is shown that the optical response of HAN cells is governed by a complicated interplay between the flexoelectric coefficient and homeotropic anchoring strength. In particular, the calculations reveal that, for weak homeotropic anchoring, the flexoelectric effect leads to a non-linear voltage shift of the optical transmittance as a function of flexoelectric coefficient, and gives rise to an asymmetry in the transmittance–voltage curve. Finally, a comparison of the continuum-model simulations with recent experimental observations indicates that both the flexoelectric coefficient and the anchoring strength of the nematic liquid crystal MBBA on a homeotropic polyimide alignment layer are significantly lower than previously reported.  相似文献   

3.
A continuum model is employed to study systematically the optical response of hybrid-aligned nematic (HAN) liquid crystal cells under the application of an external electric field. The influence of the flexoelectric effect is discussed for a large range of anchoring strengths at the homeotropic alignment layer. It is shown that the optical response of HAN cells is governed by a complicated interplay between the flexoelectric coefficient and homeotropic anchoring strength. In particular, the calculations reveal that, for weak homeotropic anchoring, the flexoelectric effect leads to a non-linear voltage shift of the optical transmittance as a function of flexoelectric coefficient, and gives rise to an asymmetry in the transmittance-voltage curve. Finally, a comparison of the continuum-model simulations with recent experimental observations indicates that both the flexoelectric coefficient and the anchoring strength of the nematic liquid crystal MBBA on a homeotropic polyimide alignment layer are significantly lower than previously reported.  相似文献   

4.
The liquid crystal (LC) alignment properties of LC cells fabricated with films of 2-naphthoxymethyl-substituted polystyrenes with different contents of naphthoxymethyl side groups were investigated. The polymer films exhibited good optical transparency in the visible light region (400–700 nm). The LC cells made from the unrubbed films of polymers having more than 57 mol%?of 2-naphthoxymethyl containing monomeric units showed homeotropic LC alignment with a high pretilt angle of about 90o. Good electro-optical characteristics, such as the threshold voltage, response time, voltage holding ratio and residual DC voltage were observed for the LC cells fabricated with the polymer having 100 mol%?of 2-naphthoxymethyl containing monomeric units as an LC alignment layer.  相似文献   

5.
ABSTRACT

The properties of the thin films of liquid crystal (LC) molecules can be governed easily by external fields. The anisotropic structure of the LC molecules has a large impact on the electrical and optical properties of the film. The Langmuir monolayer (LM) of LC molecules at the air–water interface is known to exhibit a variety of surface phases which can be transferred onto a solid substrate using the Langmuir?Blodgett (LB) technique. Here, we have studied the LM and LB films of asymmetrically substituted bent-core LC molecules. The morphology of LB film of the molecules is found to be a controlling parameter for aligning bulk LC in the nematic phase. It was found that the LB films of the bent-core molecules possessing defects favour the planar orientation of nematic LC, whereas the LB films with fewer defects show homeotropic alignment. The defect in LB films may introduce splay or bend distortions in the nematic near the alignment layer which can govern the planar alignment of the bulk LC. The uniform layer of LB film facilitates the molecules of nematic to anchor vertically due to a strong van der Waals interaction between the aliphatic chains leading to a homeotropic alignment.  相似文献   

6.
A chemical derivatization technique was used to control the pretilt angle of a liquid crystal. A polyvinyl alcohol (PVA) alignment layer, which gives a very low pretilt angle when in contact with the liquid crystal (LC), was reacted with trifluoroacetic anhydride (TFAA) in the gas phase to change polar -OH groups to -OCOCF3 groups. By introduction of the -OCOCF3 groups in to the PVA, we obtained homeotropic alignment of the E7 LC molecules. The homeotropic alignment of E7 LC molecules in contact with the derivatized PVA alignment layer was confirmed by FTIR and microscopy with crossed polarizers. The change of liquid crystal molecules from homogeneous to homeotropic alignment may be caused by the decrease in surface tension of the PVA alignment layer, due to substitution of the polar -OH groups by -OCOCF3 groups in the gas phase derivatization reaction.  相似文献   

7.
High resolution voltage dependent tilt angle studies using optical excitation of half-leaky guided modes have been conducted on a homeotropically aligned ferroelectric liquid crystal mixture (Merck SCE13) in the SA phase. Uniform homeotropic alignment is realised, with no surface aligning layer, by the application of an in-plane DC electric field when the liquid crystal is in the SC* phase. The applied field unwinds the pitch of the SC* chiral helix and gives a uniformly tilted homeotropic monodomain. On warming into the SA phase, detailed studies of the voltage induced tilt, the electroclinic effect, are then conducted at various temperatures. Because there is no influence of surface anchoring forces, the linear relationship between the induced tilt angle and the DC field is obtained even under very weak fields. Further, the relationship between induced tilt and temperature confirms the predictions of a second order Landau mean-field theory with a coupling term between the tilt angle and the DC field.  相似文献   

8.
We report the orientational behavior of nematic phases of 4-cyano-4'-pentylbiphenyl (5CB) on cationic, anionic, and nonionic surfaces before and after contact of these surfaces with solutions containing the negatively charged vesicular stomatitis virus (VSV). The surfaces were prepared on evaporated films of gold by either adsorption of poly-L-lysine (cationic) or formation of self-assembled monolayers (SAMs) from HS(CH2)2SO3- (anionic) or HS(CH2)11(OCH2CH2)4OH (nonionic). Prior to treatment with virus, we measured the initial orientation of 5CB (delta epsilon = epsilon(parallel) - epsilon(perpendicular) > 0) to be parallel to the cationic surfaces (planar anchoring) but perpendicular (homeotropic) after equilibration for 5 days. A similar transition from planar to homeotropic orientation of 5CB was observed on the anionic surfaces. Only planar orientations of 5CB were observed on the nonionic surfaces. Because N-(4-methoxybenzylidene)-4-butylaniline (MBBA, delta epsilon = epsilon(parallel) - epsilon(perpendicular) < 0) exhibited planar alignment on all surfaces, the time-dependent alignment of 5CB on the ionic surfaces is consistent with a dipolar coupling between the 5CB and electrical double layers formed at the ionic interfaces. Treatment ofpoly-L-lysine-coated gold films (cationic) with purified solutions of VSV containing 10(8)-10(10) plaque-forming units per milliliter (pfu/mL) led to the homeotropic alignment of 5CB immediately after contact of 5CB with the surface. In contrast, treatment of anionic surfaces and nonionic surfaces with solutions of VSV containing approximately 10(10) pfu/mL did not cause immediate homeotropic alignment of 5CB. These results and others suggest that homeotropic alignment of 5CB on cationic surfaces treated with VSV of titer > or = 10(8) pfu/mL reflects the presence of virus electrostatically bound to these surfaces.  相似文献   

9.
A chemical derivatization technique was used to control the pretilt angle of a liquid crystal. A polyvinyl alcohol (PVA) alignment layer, which gives a very low pretilt angle when in contact with the liquid crystal (LC), was reacted with trifluoroacetic anhydride (TFAA) in the gas phase to change polar –OH groups to –OCOCF3 groups. By introduction of the –OCOCF3 groups in to the PVA, we obtained homeotropic alignment of the E7 LC molecules. The homeotropic alignment of E7 LC molecules in contact with the derivatized PVA alignment layer was confirmed by FTIR and microscopy with crossed polarizers. The change of liquid crystal molecules from homogeneous to homeotropic alignment may be caused by the decrease in surface tension of the PVA alignment layer, due to substitution of the polar –OH groups by –OCOCF3 groups in the gas phase derivatization reaction.  相似文献   

10.
This paper shows that the dielectric anisotropy of conductivity in cells composed of nematic liquid crystal E7 (NLC-E7) is related to the fact that the diffusion constant (D) is greater in a cell with homeotropic alignment than in one with homogeneous alignment (D > D ). This behaviour can be understood by the study of the dielectric properties of the NLC based on the ionic hopping behaviour and on the analysis of the electrical conductivity in relation to the voltage applied.  相似文献   

11.
We have explored the change in alignment of a nematic liquid crystal, 4'-pentyl-4-cyanobiphenyl (5CB) with three types of photosensitive polyimide as the alignment layer by photoirradiation at 366 nm. The photosensitive polyimide alignment layer induced a reversible change in alignment of 5CB. It was observed that the 5CB molecules became aligned from homogeneous alignment to homeotropic on photoirradiation with a d.c. electric field as a bias, and reversed to the homogeneous state when photoirradiation was ceased. This result indicates that optical switching could be repeated by on and off switching of the excitation light at 366 nm. The optical switching of the nematic liquid crystal might be mainly due to a photophysical change in the polyimide surface which is affected by the chemical structures of the polyimides at the temperature at which 5CB exhibits a nematic phase. The optical switching of nematic liquid crystals with photosensitive polyimides as the alignment layer is a novel driving method for nematic liquid crystals.  相似文献   

12.
We have improved the electro‐optical properties of a bistable cholesteric liquid crystal display (Ch‐LCD) that is driven by a 3+2 dynamic driving scheme (3+2 DDS). The best contrast ratio is achieved at the selection period of 1.2–1.5 ms/line and the temperature range 26–30°C. The suitable preparation period and evolution period for contrast ratio are 40 times and 20 times the selection time, respectively. In the 3+2 DDS, rubbing the homeotropic alignment layer increases reflectivity of the ON state and keeps the reflectivity of the OFF state at the same level, so reflectivity and contrast ratio alike increase as a result. However, in a delayed homeotropic reset driving method, when the homeotropic alignment layer is rubbed, the reflectivity of both the ON and OFF states increases, thus the contrast ratio decreases. The combination of driving method and aligned surface morphology influences the relaxation mechanism in the cholesteric texture. By optimizing panel condition, we have demonstrated an 8.4″ foldable VGA Ch‐LCD that exhibits high reflectivity and contrast ratio with an addressing speed of around 1.2 ms/line.  相似文献   

13.
《Liquid crystals》2001,28(2):271-277
We have explored the change in alignment of a nematic liquid crystal, 4'-pentyl-4-cyanobiphenyl (5CB) with three types of photosensitive polyimide as the alignment layer by photoirradiation at 366 nm. The photosensitive polyimide alignment layer induced a reversible change in alignment of 5CB. It was observed that the 5CB molecules became aligned from homogeneous alignment to homeotropic on photoirradiation with a d.c. electric field as a bias, and reversed to the homogeneous state when photoirradiation was ceased. This result indicates that optical switching could be repeated by on and off switching of the excitation light at 366 nm. The optical switching of the nematic liquid crystal might be mainly due to a photophysical change in the polyimide surface which is affected by the chemical structures of the polyimides at the temperature at which 5CB exhibits a nematic phase. The optical switching of nematic liquid crystals with photosensitive polyimides as the alignment layer is a novel driving method for nematic liquid crystals.  相似文献   

14.
The effects of the surface polarity of a glass substrate on the orientation of nematic liquid crystals (LCs) were studied using the polarised optical microscope and Fourier-transform infrared spectroscopy. On the surface of oxygen plasma treated glass, a homeotropic alignment of LCs was induced for LCs with negative dielectric anisotropy. This suggests that vertical orientation of LCs could be induced on a polar glass substrate without using an LC alignment layer. Upon cooling towards the isotropic–nematic transition, E7 with positive dielectric anisotropy changes its LC arrangement to isotropic, homeotropic, planar orientations in order. The nematic LC anchoring transition of E7 was interpreted by considering the competition between van der Waals forces and dipole interactions that control the alignment of LC molecules on a polar glass surface.  相似文献   

15.
The liquid crystal (LC) alignment properties of LC cells fabricated with films of n-alkylsulphonylmethyl-substituted polyoxyethylenes (#S-PEO, #?=?4, 6, 7, 8 and 10), where # is the number of carbon atoms in the n-alkyl side groups having different n-alkyl chain length, were investigated as a function of the rubbing density. The LC cells made from unrubbed #S-PEO (# ≥8) films having more than eight carbon atoms in the n-alkyl side groups showed homeotropic LC alignment. The homeotropic LC alignment behaviour correlated well with the surface energy values of the unrubbed #S-PEO films; homeotropic LC alignment was observed when the surface energy values of the unrubbed #S-PEO films were smaller than about 21.62 mJ m?2. The LC cells made from rubbed #S-PEO (# ≥7) films having more than seven carbon atoms with a rubbing density of 150 showed homeotropic LC alignment. It was also found that the tilt angle of the LCs on the rubbed #S-PEO films was affected not only by the n-alkyl chain length of the polymers, but also by the rubbing density, regardless of the surface energy value of the #S-PEO film.  相似文献   

16.
Patterned homeotropic alignment using nanoparticles (NPs) was achieved using inkjet printing. Two types of gold NPs, one smaller and one larger in core diameter (2 and 5 nm) capped with a monolayer of dodecanethiol, and emissive carbon dots with a core diameter of 2.5 nm featuring a mixed ligand shell of carboxylic acid groups and aliphatic hydrocarbon chains were tested on both rigid glass and flexible polycarbonate substrates. To define the director across the entire cell and not just in the NP-printed areas, alignment ‘underlayers’ were tested, and 30° obliquely evaporated SiOx as alignment ‘underlayer’ generally provided the best results with the highest quality of the homeotropic alignment as well as the best contrast at the boundary between printed and non-printed (i.e. homeotropic and planar) domains of the fabricated cells. We also report that the chemical nature of the nematic liquid crystal (LC) used, the number of layers printed and the composition of the nano-ink need to be adjusted to obtain pattern alignment devices that positively benefit from both the properties of the LC and the nanomaterial printed.  相似文献   

17.
A photopolymer based on N-(phenyl)maleimide was synthesized and the liquid crystal (LC) alignment effects of the photopolymer layer on homeotropic alignment were studied. Good LC alignment with UV exposure of PMI5CA (N-(phenyl)maleimide with a 5-carbon chain cinnamoyl group) was obtained. However, defective LC alignment was observed for PMI3CA (N-(phenyl)maleimide with a 3-carbon chain cinnamoyl group) and PMIF (N-(phenyl)maleimide including a fluoro-cinnamoyl group). Good LC alignment with UV exposure on the PMI5CA surface was observed with annealing temperature up to 150°C. It seems that the LC aligning ability of the photopolymer layers based on N-(phenyl)maleimide depends on the side chain length of the photopolymer.  相似文献   

18.
We synthesised a series of poly(4-styrenesulphonate)/alkyltrimethylammonium (PSS-#Cx, # = 12, 14 and 16; x?=?80, 60, 40 and 20) complexes, where # is the number of carbon atoms in the alkyl groups in alkyltrimethylammonium bromide, and x is the molar content (%) of alkyltrimethylammonium moiety, using polymer analogous reactions to investigate their liquid crystal (LC) alignment properties. In general, the LC cell fabricated using the polymer film having a longer alkyl side group and a higher molar content of alkyl side group showed homeotropic LC alignment behaviour with a pretilt angle of about 90°. The homeotropic LC alignment behaviour was well correlated with the surface energy of the polymer films. Homeotropic LC alignment was observed when the surface energy values of the polymer were smaller than about 44.87 mJ/m2.  相似文献   

19.
The orientation properties of some complexes of chromium (III) or cobalt (II) with oxygen-containing ligands are presented. The orientation obtained is mostly homeotropic. The possibility of anchoring by coordination of liquid crystal (LC) molecules to the transition metal ion within the alignment layer is discussed on the basis of spectroscopic arguments.  相似文献   

20.
Zili Li 《Liquid crystals》1995,19(3):307-311
We report the observation of a liquid crystal tilt transition from homeotropic to planar orientation induced by photopolymerization of the alignment layer in the absence of liquid crystal. The alignment agent is a unique, polymerizable lecithin (DC23PC), which induces homeotropic alignment before UV exposure. After non-polarized UV exposure, a tilted orientation is obtained. Moreover, further buffing of the UV treated substrate yields a homogeneous alignment. We believe that the conformation change in the lecithin array caused by solid state polymerization is primarily responsible for the transition. These results help to explain the mechanism of liquid crystal alignment and will lead to several potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号