首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invisible thermal cloak, which cancels distortions of temperature distribution caused by objects, has many potential applications in thermal engineering. In this letter, we theoretically proposed and simulatively verified a new design method for quasi-invisible thermal cloak. Different from conventional transformation thermodynamics that focus on complete invisibility, our method only decreases the effective scale of objects to small enough and realizes a quasi-invisible cloaking effect in thermal conduction regime. However, this quasi-invisible cloak has the same effect as that of invisible thermal cloak in practical engineering. More important, our cloak is easy to construct by natural materials due to its homogenous thermal properties and can cloak objects with different shapes and properties. These characters make the clock more comfortable for engineering applications.  相似文献   

2.
隐声衣结构设计和实验研究新进展   总被引:1,自引:1,他引:0       下载免费PDF全文
胡文林  杨军 《应用声学》2013,32(2):91-99
隐声衣是一项使物体隐藏于声场的新技术,与传统吸声方式相比,隐声衣消除回波时不会在目标背后留下声影区。隐声衣的物理实现是重点研究方向之一,利用具有特殊性质的材料或结构消除散射是获得隐声效果的主要途径。文章综述了隐声衣研究在结构设计和实验方面的几项新发展。包括基于超常材料的隐声衣、基于温度递度的隐声衣、应用反演设计方法的隐声衣、有源隐声衣等,主要介绍隐声衣机理和结构设计方面的新思想,以及新型人工材料和人工结构在隐声衣研究中的应用。  相似文献   

3.
An imperfect multi-layered acoustic cloak is proposed for a two-dimensional cloaking zone based on feasible material properties. In this model, the matching of sound speed and acoustic impedance has been investigated, and the effects of material and geometric properties on the imperfect cloak have been studied for better design of the imperfect cloak. The imperfect cloak could be improved using appropriate changes in the design parameters. By increasing the thickness of the high density layer and with some changes in the sound speeds between the high density and the low density layers, the imperfect cloaking model showed better cloaking performance than Cummer–Schurig cloak. Also, present results show that the sound speed matching is more important for acoustic cloaking than the impedance matching. These results can be applied as a practical design guide for two-dimensional cloaks using multilayered structures composed of naturally existing materials.  相似文献   

4.
Here we show that floating objects in stratified fluids can be cloaked against broadband incident waves by properly architecting the bottom corrugations. The presented invisibility cloaking of gravity waves is achieved utilizing a nonlinear resonance concept that occurs between surface and internal waves mediated by the bottom topography. Our cloak bends wave rays from the surface into the body of the fluid. Wave rays then pass underneath the floating object and may be recovered back to the free surface at the downstream bearing no trace of diffraction or scattering. The cloak is the proper architecture of bottom corrugations only, and hence is surface noninvasive. The presented scheme is a nonlinear alternative to the transformation-based cloaking, but in the context of dispersive waves.  相似文献   

5.
直接求解导热方程对具有自适应热源的可控式热隐身技术进行数值研究,探索热流控制方法及隐身效果,推导出均匀背景下二维对称截面热斗篷热隐身区域自适应热源分布的通解.仿真结果表明:对于任意对称截面斗篷,自适应热源都能使得扰动后的温度场很好地恢复到背景温度场,达到热隐身的目的.  相似文献   

6.
张健  张昊春  黄子亮  孙文博  李依依 《中国物理 B》2022,31(1):14402-014402
In recent years,there is a strong interest in thermal cloaking at the nanoscale,which has been achieved by using graphene and crystalline silicon films to build the nanoscale thermal cloak according to the classical macroscopic thermal cloak model.Silicon carbide,as a representative of the third-generation semiconductor material,has splendid properties,such as the high thermal conductivity and the high wear resistance.Therefore,in the present study,we build a nanoscale thermal cloak based on silicon carbide.The cloaking performance and the perturbation of the functional area to the external temperature filed are analyzed by the ratio of thermal cloaking and the response temperature,respectively.It is demonstrated that silicon carbide can also be used to build the nanoscale thermal cloak.Besides,we explore the influence of inner and outer radius on cloaking performance.Finally,the potential mechanism of the designed nanoscale thermal cloak is investigated by calculating and analyzing the phonon density of states(PDOS)and mode participation rate(MPR)within the structure.We find that the main reason for the decrease in the thermal conductivity of the functional area is phonon localization.This study extends the preparation method of nanoscale thermal cloaks and can provide a reference for the development of other nanoscale devices.  相似文献   

7.
Based on the effective medium theory, we propose a practical implementation of a cylindrical acoustic cloak with a concentric alternating multilayered structure of homogeneous isotropic materials, which can perfectly mimic the ideal radius-dependent and anisotropic ordinary lens cloak. The proposal exhibits near-ideal cloaking performance such as low-scattering and shadow-reducing in a wide frequency range, thus it can hide an object from the detection of acoustic waves. The acoustic wave can pass through the cloaking shell with an unchanged wavefront shape, which endues the cloaked object with duplex communication ability. More simulations on the acoustic far-field scattering patterns and the total scattering cross-section are performed to investigate the layer number and the frequency dependence of the cloaking effect, and the results show that the thinner layers exhibit a better cloaking effect. The proposal may significantly facilitate the experimental demonstration of the acoustic cloak.  相似文献   

8.
Invisible optical and thermal cloaking have been explored as the typical demonstrations of the transformation optics and thermotics theory. However, the existing cloaks are realized by only one-coordinate transformation, and the cloaking layout, i.e. the form of electromagnetic wave/heat passing around the invisible region, is single for a long time. Here, we propose a new rotated thermal cloak which can unify the conventional cloaking and rotating together, and realize the while-rotating–while-cloaking effect. The required anisotropic thermal conductivity tensor is deduced from the new geometric mapping. Though rotated, the heat flux can be tuned around the central invisible region perfectly by the proposed rotated thermal cloak. The underlying physics is explored by comprehensive analysis of the distribution of the thermal conductivity tensor, which is further compared with those of the conventional cloak and rotator. The experimental feasibility is also discussed by validating the practical while-rotating–while-cloaking effect through a proof-of-concept design. The proposed rotated thermal cloak is expected to extend the possibility of cloaking scheme, and open avenues for the multiple coordinate transformation in counterpart physical fields, like optics, electrics, acoustics, magnetics, mechanics, etc.  相似文献   

9.
《Physics letters. A》2019,383(19):2296-2301
With the advent of thermal metamaterials, many new thermal functionalities have been proposed, like thermal cloaking, concentrating, etc. However, these thermal functionalities are based on the transformation thermotics or scattering cancellation technique, which, derived from Fourier's law, cannot apply to the micro-/nanoscale counterparts. In this paper, we design a nanoscale thermal cloak based on a crystalline silicon (Si) membrane and investigate the in-plane phonon transport via non-equilibrium molecular dynamics (NEMD) simulation by in-situ tuning the thermal conductivity of the thermal cloak from crystalline Si to amorphous Si. The two-dimensional temperature profile is obtained, and the thermal cloaking effect is evaluated by the ratio of heat flux. By analyzing the phonon density of state (PDOS) and the mode participation ratio (MPR), the mechanism can be attributed to the phonon localization in the annealed cloaking region. The proposed nanoscale thermal cloak by in-situ tuned thermal conductivity, may trigger the development of nanoscale thermal functionalities and open avenues for and thermal management for nano-photonics and nano-electronics.  相似文献   

10.
We demonstrated the possibility of designing super-thin electromagnetic cloaks based on spoof surface plasmon (SSP). Using a metamaterial layer, incident waves can be coupled into SSP efficiently at the air/metamaterial interface. Due to the strong surface confinement of SSP, EM waves are squeezed into and propagate in deep sub-wavelength scales. Implementation of an 8.2 GHz cloak less than 1/50 the cloaking diameter was presented using split ring resonator (SRR). Excellent cloaking effect was verified by simulations. Rather than isolating objects from the background, such cloaks can drastically enhance the field intensity around the cloaked object. This is of particular importance in applications such as weak wave detection and near-field sensing.  相似文献   

11.
We present an impedance-matched reduced version of acoustic cloaking whose mass is in a reasonable range. A layered cloak design with isotropic material is also proposed for the reduced cloak. Numerical calculations from the transfer matrix methods show that the present layered cloak can reduce the scattering of an air cylinder substantially.  相似文献   

12.
Due to the correspondence of the acoustic equations to Maxwell??s equations of one polarization in two dimensions, we exploit theoretically the acoustic counterpart of the recently proposed remote invisibility cloak. The cloak consists of a circular cylindrical core with designed bulk moduli, and an ??anti-object?? embedded inside a shell with anisotropic mass densities. The material parameters of the cloaking shells are obtained by using the coordinate transformation method. The essence of the new design of cloaks relies on the ability that the cloaked object is no longer deafened by the cloaking shell, which is verified by both the far-field and near-field full-wave finite-element simulations in two dimensions.  相似文献   

13.
In recent years, nanoscale thermal cloak, as a representative of nanoscale heat flux regulation devices, has attracted a lot of attention from researchers. However, the existing design methods are relatively complicated and all adopt constant temperature boundaries, the temperature changes constantly in the real environment, which greatly hinders its engineering applications. In this paper, inspired by phonon localization theory, we construct a nanoscale thermal cloak by a perforated silicon membrane and evaluate its cloaking performance and dynamic response. Results show that when the perforated area is fixed, the more the number of holes, the better the cloaking performance. In addition, the nanoscale thermal cloak still exhibits good cloaking performance in the dynamic environment. Finally, the cloaking mechanism is analyzed by calculating the phonon density of states (PDOS) and mode participation rate (MPR), and the reduction of thermal conductivity in the functional region is attributed to phonon localization.  相似文献   

14.
高东宝  曾新吾 《物理学报》2012,61(18):184301-184301
基于等效介质理论, 提出了具有共焦层状结构的椭圆柱形声隐身衣设计方法. 理论分析与有限元数值模拟表明, 所设计隐身衣依然具有完美隐身衣典型特征, 可使刚性圆柱体散射场明显减小, 并且在隐身衣区域表现出波阵面弯曲的特性, 同时在隐身衣外部波阵面保持不变. 增加隐身衣离散层数可以拓宽其有效工作频带, 改善隐身效果. 由于是一种线变换隐身衣, 隐身效果受到了入射波方向的影响, 只有当入射波方向与椭圆长轴平行时效果最佳. 另外当椭圆柱焦距非常小的时候, 可近似认为是圆柱形隐身衣. 仿真实验结果证明了方法的正确性. 该研究为实现复杂形状声隐身衣提供了一种有效途径.  相似文献   

15.
The concentrically layered thermal cloaks with isotropic materials could realize the equivalent thermal cloaking effect with Pendry's cloak,while the effectiveness is scarcely investigated quantitatively.Here we examine the cloaking effectiveness quantitatively by evaluating the standard deviation of the temperature difference between the simulated plane with the layered thermal cloak and Pendry's thermal cloak.The design rules for the isotropic materials in terms of thermal conductivity and layer thickness are presented.The present method could quantitatively evaluate the cloaking effectiveness,and could open avenues for analyzing the cloaking effect,detecting the(anti-) cloaks,etc.  相似文献   

16.
夏舸  杨立  寇蔚  杜永成 《物理学报》2017,66(10):104401-104401
在变换热力学的基础上,通过坐标变换的方法,推导出三维任意形状热斗篷导热系数的通解表达式,并进行了全波仿真验证.结果表明:热流均能绕过保护区域流出,保护区域的温度保持不变,而且热斗篷外的温度场并没有破坏,具有很好的热保护和热隐身的效果.这一方法把变换热力学从二维拓展到三维,具有普遍的适用性.同时,这种技术为热流流动路径和目标温度场的控制奠定了理论基础,在微芯片、电动机的保护以及目标热隐身上有潜在应用.  相似文献   

17.
In this paper, the properties of cylindrical high permittivity dielectric particles are studied. A design for broadband reduction of the scattering signature of metallic objects is proposed by implementing simplified ground-plane cloaking schemes. The devices are functional in the presence of a ground plane as well as in free space ranging from 4 GHz to 10 GHz. The required dielectric map for the cloak is achieved by means of manipulating the dimensions of the periodically distributed dielectric cylinders embedded in a host medium with a permittivity close to one. The scattering reduction effects are verified through simulation results. The proposed all dielectric cloaks are advantageous over other schemes due to their non-dispersive nature, the broad bandwidth, the low loss, and the ease of fabrication.  相似文献   

18.
Transformation optics is a design tool that connects the geometry of space and propagation of light. Invisibility cloaking is a corresponding benchmark example. Recent experiments at optical frequencies have demonstrated cloaking for the light amplitude only. In this Letter, we demonstrate far-field cloaking of the light phase by interferometric microscope-imaging experiments on the previously introduced three-dimensional carpet cloak at 700 nm wavelength and for arbitrary polarization of light.  相似文献   

19.
A three-dimensional (3D) spherical acoustic cloak is designed using an acoustic layered system, which can hide an object from the detection of acoustic wave in arbitrary direction. The cloak is constructed from multilayered concentric spherical shells filled with homogeneous isotropic materials. Based on spherical wave expansion method, we confirm that significant low-reflection, acoustic-shadow-reducing, and wavefront-bending effects in 3D space can be achieved by the proposed cloak. The angle distribution of the scattered wave is further evaluated by the far-field scattering pattern. In addition, the cloak is demonstrated to work efficiently in a wide bandwidth in which the cloaking efficiency decreases with increasing frequency. This study may be helpful to design high-performance 3D acoustic cloaks for broadband acoustic waves in all incidence directions.  相似文献   

20.
张若洋  赵清  葛墨林 《中国物理 B》2016,25(8):84702-084702
We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach.The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation(or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号