首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In quasimagnetic tunnel junctions with a EuS spin-filter tunnel barrier between Al and Co electrodes, we observed large magnetoresistance (MR). The bias dependence shows an abrupt increase of MR ratio in high bias voltage, which is contrary to conventional magnetic tunnel junctions. This behavior can be understood as due to Fowler-Nordheim tunneling through the fully spin-polarized EuS conduction band. The I-V characteristics and bias dependence of MR calculated using tunneling theory show excellent agreement with experiment.  相似文献   

2.
金莲  朱林  李玲  谢征微 《物理学报》2009,58(12):8577-8583
在转移矩阵方法及Mireles和Kirczenow的量子相干输运理论的基础上,研究了正常金属层/磁性半导体层/非磁绝缘层/磁性半导体层/正常金属层型双自旋过滤隧道结中Rashba自旋轨道耦合效应和自旋过滤效应对自旋相关输运的影响.讨论了隧穿磁电阻(TMR)、隧穿电导与各材料层厚度、Rashba自旋轨道耦合强度以及两磁性半导体中磁矩的相对夹角θ之间的关系.研究表明:含磁性半导体层的双自旋过滤隧道结由于磁性半导体层的自旋过滤效应和Rashba自旋轨道耦合作用可获得极大的TMR值.另外TMR和隧穿电导随着Rashba自旋轨道耦合强度的变化而振荡,振荡周期随Rashba自旋轨道耦合强度的增大逐渐减小. 关键词: 双自旋过滤隧道结 Rashba自旋轨道耦合 隧穿磁电阻 隧穿电导  相似文献   

3.
李统藏  刘之景  王克逸 《物理学报》2003,52(11):2912-2917
对自旋极化电子从铁磁金属通过绝缘层薄膜注入半导体时的自旋极化率与绝缘层厚度以及所加偏压的关系等作了计算.所得结果与最新实验结果相符,并发现偏压适中、绝缘层较厚时 有较大的电流自旋极化率,偏压很小时电流自旋极化率几乎为零. 关键词: 自旋极化电子注入 Slonczewski模型 隧道磁电阻 非零偏压  相似文献   

4.
The elastic tunnel current versus bias over the range ± 1 V in junctions of the type A1-I(X)-M where M = Pb, Ag, Cu or Au and X is 2- 3- or 4-pyridinecarboxaldehyde has been used to determine parameters which describe the barrier in each. Little variation attributable to the different dopants is observed but there are substantial effects attributable to the top metal M in both clean and doped junctions. It is suggested that electron densities of states are responsible. The potential step between dopant and metal M decreases in the sequence Au:Pb:Ag. Evidence is collated from a number of sources to suggest that hydroxyl dipole layers influence the metal-organic interface potential step both in aqueous-solution-doped tunnel junctions and in SERS systems.  相似文献   

5.
The voltage change caused in a current-biased superconducting tunnel junction by scanning the junction surface with an electron beam can serve to generate a two-dimensional image of spatial structures within the specimen. Depending upon the bias point during the scanning process, an image of local variations in the tunneling current density due to variations of the tunnel barrier resistance or in the energy gaps of the electrodes is obtained. PbAuIn/PbBi cross-line and SiO-window junctions have been used to demonstrate this imaging technique.  相似文献   

6.
Tunnel experiments have been performed on Au/Sb2Te3/Al tunnel junctions to study elastic interelectrode tunneling through the small energy gap of a narrow-gap semiconductor. Tunnel conductance exhibited narrow width conductance peak at zero bias voltage. This behaviour is in accordance with the result of the theoretically calculated tunnel conductance, in which the nonparabolic dispersion relation within the energy gap of the narrow-gap semiconductor used as a tunnel barrier in a metal/narrow-gap semiconductor/metal tunnel structure is included. And some interesting structures are also observed in the conductance curves.  相似文献   

7.
We present ab initio calculations for the electronic ground-state and transport properties of epitaxial Fe/semiconductor/Fe (0 0 1) tunnel junctions. The ground state properties are determined by the ab initio Screened KKR Green's function method and the transport properties by a Green's function formulation of the Landauer–Büttiker formalism. We focus on tunnel junctions with a semiconducting ZnSe barrier and compare them to results for junctions with Si and GaAs barriers. We comment on the presence of metal-induced gap states (MIGS) in the semiconductor, the spin polarization of which strongly depends on the nature of the barrier. We investigate furthermore the influence of one atomic layer at the interface of a non-magnetic metal (Cu, Ag, Al) and of a magnetic 3d transition metal.  相似文献   

8.
以方势垒描述正常金属/绝缘层/自旋三重态p波超导结中绝缘层对准粒子输运的影响,通过求解Bogoliubov-de Gennes(BdG)方程,利用Blonder-Tinkham-Klapwijk(BTK)理论,计算了p波超导结的隧道谱.研究表明:(1)绝缘层厚度的增加,可导致自旋三重态p波超导结隧道谱中出现亚能隙共振峰...  相似文献   

9.
魏健文  董正超 《物理学报》2005,54(5):2318-2324
在正常金属/绝缘层/s波超导隧道结(NIS结)中,以方势垒描述绝缘层对准粒子输运的影 响,运用Bogoliubov_de Gennes(BdG)方程、Blonder_Tinkham_Klapwijk(BTK)理论,计算 了NIS隧道结中的准粒子输运系数和微分电导.研究表明,微分电导随绝缘层厚度的变化呈振 荡和衰减两种趋势,其振荡的周期和衰减的快慢均强烈地依赖于绝缘层的势垒值以及V=Δ 0/e的偏压值,电导峰的高低及峰的位置与绝缘层厚度密切相关,显示了比δ势 描述更为丰富多彩的隧道谱. 关键词: NIS结 方势垒 微分电导  相似文献   

10.
The variation of the tunnel spin-polarization (TSP) with energy is determined using a magnetic tunnel transistor, allowing quantification of the energy dependent TSP separately for both ferromagnet/insulator interfaces and direct correlation with the tunnel magnetoresistance (TMR) measured in the same device. The intrinsic TSP is reduced below the Fermi level, and more strongly so for tunneling into empty states above the Fermi level. For artificially doped barriers, the low bias TMR decreases due to defect-assisted tunneling. Yet, this mechanism becomes ineffective at large bias, where instead inelastic spin scattering causes a strong TMR decay.  相似文献   

11.
By making a combination of both point contact and barrier type tunnel junctions on a single sample of the highT c superconductor BSCCO (2212) single crystal, we have shown that as the tunneling tip is slowly retracted from the surface a point contact junction gradually evolves from a N-S short to a high resistance tunnel junction. The scaled dynamic conductance (dI/dV) of this point contact tunnel junction becomes almost identical to that of a conventional barrier type tunnel junction and both show a linear dI/dVV curve. The observation implies that at high resistance a point contact junction behaves in the same way as a barrier type tunnel junction. We suggested that the almost linear tunneling conductance obtained in both the cases most likely arises due to an intrinsic characteristic of the surface of the crystal comprising of a mosaic of superconducting regions of the order of a few nanometers. We also conclude that the barrierless (N-S) point contact obtained by piercing the surface oxide layer of the crystal shows Andreev reflection which we suggest as the origin of the zero bias anomaly often observed in point contact junctions.  相似文献   

12.
Electron spin-polarized tunneling is observed through an ultrathin layer of the molecular organic semiconductor tris(8-hydroxyquinolinato)aluminum (Alq3). Significant tunnel magnetoresistance (TMR) was measured in a Co/Al2O3/Alq3/NiFe magnetic tunnel junction at room temperature, which increased when cooled to low temperatures. Tunneling characteristics, such as the current-voltage behavior and temperature and bias dependence of the TMR, show the good quality of the organic tunnel barrier. Spin polarization (P) of the tunnel current through the Alq3 layer, directly measured using superconducting Al as the spin detector, shows that minimizing formation of an interfacial dipole layer between the metal electrode and organic barrier significantly improves spin transport.  相似文献   

13.
We employ the spin-torque response of magnetic tunnel junctions with ultrathin MgO tunnel barrier layers to investigate the relationship between spin transfer and tunnel magnetoresistance (TMR) under finite bias, and find that the spin torque per unit current exerted on the free layer decreases by < 10% over a bias range where the TMR decreases by > 40%. This is inconsistent with free-electron-like spin-polarized tunneling and reduced-surface-magnetism models of the TMR bias dependence, but is consistent with magnetic-state-dependent decay lengths in the tunnel barrier.  相似文献   

14.

At the interfaces between the metallic electrodes and barrier in magnetic tunnel junctions it is possible for localized states to form which are orthogonal to the itinerant states for the junction, as well as resonant states that can form at the interfaces. These states form highly conducting paths across the barrier when their orbitals point directly into the barrier; these paths are in addition to those formed by the itinerant states across the entire junction. Most calculations of transport in magnetic tunnel junctions are made with the assumptions that the transverse momentum of the tunnelling electrons is conserved, in which case the itinerant electron states remain orthogonal to localized states. In principle it is possible to include diffuse scattering in both the bulk of the electrodes and the barrier so that the transverse momentum is not conserved, as well as the processes that couple localized states at the electrode-barrier interface to the itinerant states in the bulk of the electrodes. However, including these effects leads to lengthy calculations. Therefore, to assess the conduction across the barrier through the localized states that exist in parallel to the itinerant states we propose an approximate scheme in which we calculate the conductance of only the barrier region. While we do not take explicit account of either of the effects mentioned above, we do calculate the tunnelling through all the states that exist at the electrode-barrier interfaces by placing reservoirs directly across the barriers. To calculate the current and magnetoresistance for magnetic tunnel junctions (the junction magnetoresistance (JMR)) we have used the lattice model developed by Caroli et al. The propagators, density of states and hopping integrals entering the expressions for the current are determined by using the spin polarized scalar-relativistic screened Korringa-Kohn-Rostoker method that has been adapted to layered structures. By using vacuum as the insulating barrier we have determined with no adjustable parameters the JMR in the linear response region of tunnel junctions with fcc Co(100), fccNi(100) and bcc Fe(100) as electrodes. The JMR ratios that we find for these metal/vacuum/metal junctions are comparable with those measured with alumina as the insulating barrier. For vacuum barriers we find that tunnelling currents have minority- spin polarization whereas the tunnelling currents for th se electrodes have been observed to be positively (majority) polarized for alumina barriers and minority polarized for SrTiO 3 barriers. In addition to determining the JMR ratios in linear response we have also determined how the magnetoresistance of magnetic tunnel junctions varies with a finite voltage bias applied across the junction. In particular we have found how the shape of the potential barrier is altered by the applied bias and how this affects the current. Comparisons with data as they become available will eventually determine whether our approximate scheme or the ballistic Landauer-Büttiker approach is better able to represent the features of the electronic structure that control tunnelling in magnetic tunnel junctions.  相似文献   

15.
A qualitative analysis of spin-dependent tunneling in ferromagnetic metal-insulator-ferromagnetic metal junctions is performed using the WKB approximation and a parabolic band model. It is shown that, as distinct from other tunneling characteristics, only electrons moving at large angles in the plane of the tunnel barrier contribute to the magnetoresistance. The cause of the rapid decrease in the junction magnetoresistance upon applying a bias voltage across the junction is ascertained. It is shown that this cause is attributed to the mirror character of tunneling and remains valid within the framework of more complicated models.  相似文献   

16.
以方势垒描述N-I-d波超导体结中绝缘层对准粒子输运的影响,通过求解Bogoliubov-de Gennes(BdG)方程,利用Blonder-Tinkham-Klapwijk(BTK)理论,计算了N-I-d波超导体结的隧道谱.研究表明:(1)绝缘层厚度在不同纳米量级下的隧道谱形状各异,即便其厚度处在同一纳米量级上,彼此间仅相差零点几个纳米,电会导致微分电导随偏压的变化关系迥异,这为解释高Tc氧化物超导体的相关实验现象提供了更多的可能性;(2)粒子的入射角和绝缘层的势垒值对零偏压电导峰有显著影响.  相似文献   

17.
The problem is considered here of determining, by an experimental method, the height of potential barriers in metal — dielectric — metal tunnel structures at the junctions. Formulas are derived according to which one can calculate the height of a potential barrier from measurements of the first and the second derivative of the tunnel current with respect to the bias voltage across a junction.  相似文献   

18.
Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier.  相似文献   

19.
Using the first-principle calculations, we investigate the spin-dependent transport properties of Fe-substituted zigzag graphene nanoribbons (ZGNRs). The substituted ZGNRs with single or double Fe atoms, distributing symmetrically or asymmetrically on both edges, are considered. Our results show Fe-substitution can significantly change electronic transport of ZGNRs, and the spin-filter effect and negative differential resistance (NDR) can be observed. We propose that the distribution of the electronic spin-states of ZGNRs can be modulated by the substituted Fe and results in the spin-polarization, and meanwhile the change of the delocalization of the frontier molecular orbitals at different bias may be responsible for the NDR behavior.  相似文献   

20.
We investigated spin-dependent tunneling conductance properties in fully epitaxial double MgO barrier magnetic tunnel junctions with layered nanoscale Fe islands as a middle layer. Clear oscillations of the tunneling conductance were observed as a function of the bias voltage. The oscillation, which depends on the middle layer thickness and the magnetization configuration, is interpreted by the modulation of tunneling conductance due to the spin-polarized quantum well states created in the middle Fe layer. This first observation of the quantum size effect in the fully epitaxial double barrier magnetic tunnel junction indicates great potential for the development of the spin-dependent resonant tunneling effect in coherent tunneling regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号