首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘津  孙通  甘兰萍 《发光学报》2018,39(5):737-744
利用共线双脉冲激光诱导击穿光谱(LIBS)技术对溶液中的倍硫磷含量进行定量检测研究。采用石墨对倍硫磷溶液进行富集,利用双通道高精度光谱仪获取样品的LIBS光谱。以碳元素谱线(CⅠ247.856 nm)为内标对210~260 nm波段谱线进行校正,然后利用竞争性自适应重加权算法(CARS)筛选与倍硫磷相关的重要波长变量,最后应用最小二乘支持向量机(LSSVM)建立倍硫磷含量的定标模型,并与基本定标法及内标法建立的单变量定标模型进行比较。研究结果表明,共线双脉冲LIBS技术可以用于溶液中的倍硫磷含量检测。基本定标法建立的最优定标模型的拟合度R2为0.935 04,预测集样品的平均预测相对误差(PRE)为41.50%;内标法建立的最优单变量定标模型的拟合度R2为0.993 61,预测集样品的平均PRE为14.91%;内标-CARS-LSSVM定标模型的拟合度R2为0.998 6,预测集样品的平均PRE为8.06%。对比上述3类定标模型,内标-CARS-LSSVM定标模型性能最优,内标法建立的定标模型次之,而基本定标法建立的定标模型最差。由此可知,CARS方法可以有效筛选倍硫磷相关的重要变量,内标法结合CARS及LSSVM方法可以改善定标模型性能,提高预测精度。  相似文献   

2.
采用激光诱导击穿光谱(LIBS)技术定量分析缅甸翡翠中Fe元素的浓度。选择Fe元素的275.57 nm光谱线作为定量分析谱线,选取Si元素的288.17 nm光谱线作为内标谱线,选取12个缅甸翡翠样品作为研究对象,以其中9个样品绘制了传统定标法和内定标法的Fe元素定标曲线,并将定标曲线用于3个检验样品的Fe含量的实际预测。实验结果表明,采用传统定标方法时,定标样品光谱强度的相对标准偏差(RSD)在1.4%~8.3%之间,所建立的Fe元素浓度含量定标曲线的拟合相关系数R2为0.979,使用该方法建立的定标曲线对3个检验样品中Fe元素含量进行测定,最大相对误差为10.6%;而采用内定标法时,定标样品光谱强度的比值(IFe/ISi)的相对标准偏差(RSD)在0.9%~5.7%之间,Fe的拟合相关系数R2达到0.989,样品中Fe元素的测定相对误差均可降低到7%以下。结果证明,利用内定标法定量分析翡翠中Fe的含量比传统定标法相对误差更小,采用LIBS技术结合内定标法更适于缅甸翡翠样品中Fe元素定量分析。  相似文献   

3.
钢铁中钒、钛元素的激光诱导击穿光谱定量检测   总被引:1,自引:0,他引:1  
采用激光诱导击穿光谱(LIBS)技术测量钢铁中钒、钛元素的含量。选取V Ⅰ 440.85 nm和Ti Ⅰ 334.19 nm作为定量分析谱线、基体元素谱线Fe Ⅰ 438.35 nm作为内标谱线,分别建立了基本定标法和内定标法的钢铁样品中V和Ti含量的光谱分析定标曲线,并将它们用于检验样品的定量分析。研究表明,V和Ti基本定标曲线的拟合相关系数R2分别为0.987 5和0.990 9,对检验样品中V和Ti元素的测定相对误差最大分别为11.1%和4.0%;而采用内定标法时,V和Ti的拟合相关系数R2分别达到0.995 2和0.992 1,对检测样品中V和Ti元素的测定相对误差均可降低到4.0%以下。结果证明,采用内定标的激光诱导击穿光谱分析方法更适于钢铁样品中钒、钛含量的测定。  相似文献   

4.
采用显微激光诱导击穿光谱技术对低合金钢标准样品进行定量分析,空间分辨率达到20 μm,单脉冲检测极限(LoD)为0.10%。根据谱线强度和元素浓度的关系获得Mn元素的基本定标曲线,定标曲线的拟合度系数R2为0.97,采用去一交互验证法预测了样品中Mn元素的浓度,七个样品的平均预测误差为12.91%,去一交互验证均方根误差为0.11%。采用内标法时定标曲线的拟合度系数R2为0.99,七个样品的平均预测误差为7.25%,去一交互验证均方根误差为0.07%。实验结果表明显微激光诱导击穿光谱技术能有效应用于物质微区元素的高精度定性、定量分析。  相似文献   

5.
在合金钢众多成分中碳(C)属于微量非金属元素,其含量决定了合金钢的主要力学性能,准确、实时掌握C元素的含量,对合金钢的生产及分类起到关键作用。双脉冲激光诱导击穿光谱(DP-LIBS)是一种可用于在线快速分析合金钢中元素的有效手段,不仅具有实时、样品预处理简单等优点,还能够增强物质的烧蚀度和信号强度,从而提高LIBS技术的检测灵敏度。为了减小基体效应影响,进一步提高LIBS技术对合金钢中微量C元素定量分析的精确性,采用多元素多谱线的修正方法,通过DP-LIBS结合反向传播人工神经网络(BP-ANN),建立多变量GA-BP-ANN定标法。首先在氩气环境对合金钢样品进行DP-LIBS采集,目标C元素选择了谱线强度变化能够体现其含量变化的C 193.09 nm处的原子谱线,同时选取共存元素Fe,Cr,Mn和Si对应的特征谱线,以提供更多的光谱信息,提高C元素定量分析的准确度,共选择15条特征分析谱线,其中Fe元素含量丰富且相对稳定,作为内标元素引入以减小谱线波动;之后通过遗传算法(GA)寻优,对C/Fe,Cr/Fe,Mn/Fe和Si/Fe的谱线强度比进行优化选择;最后将GA选择的多谱线强度比作为BP-ANN网络的输入,输出为目标C元素浓度值,建立多变量GA-BP-ANN定标方法。为比较该方法预测结果的精确性,同时建立传统定标曲线法与以C/Fe为输入的单变量BP-ANN定标方法。利用标准合金钢样品,通过留一法交叉预测C元素含量值,与内标法和单变量BP-ANN定标方法相比,预测样品的平均相对误差分别由14.78%和14.75%减小到8.29%,预测值与真实值之间的决定系数R2分别由0.967 4和0.974 4提升至0.989 3。结果说明了多变量GA-BP-ANN定标法预测的C元素含量更接近于真实含量,证明了该方法用于LIBS检测合金钢中C元素含量的可行性。  相似文献   

6.
利用共线双脉冲激光诱导击穿光谱 (LIBS)对溶液中的乐果含量进行定量检测。采用圆柱形桐木木片对农药乐果进行富集,然后利用双通道高精度光谱仪获取样本在206.28~481.77 nm波段范围的LIBS光谱。选用4条磷元素谱线(P Ⅰ 213.618 nm,P Ⅰ 214.91 nm,P Ⅰ 253.56 nm,P Ⅰ 255.325 nm)为分析线,碳元素谱线(C Ⅰ 247.856 nm)为内标线,应用单变量线性拟合及最小二乘支持向量机(LSSVM)方法分别建立溶液中乐果含量的单变量定标模型、LSSVM定标模型及基于内标法的LSSVM定标模型,并进行比较。三个定标模型中,基于内标法的LSSVM定标模型性能最优,LSSVM定标模型性能次之,而单变量定标模型性能最差。结果表明,共线双脉冲LIBS技术结合LSSVM及内标法可以用于溶液中的乐果含量定量检测,所建立的定标模型的决定系数为0.999 7,训练集和验证集的平均相对误差分别为11.24%及12.01%。LSSVM方法及内标法均能在一定程度上改善定标模型的性能,提高预测精度。  相似文献   

7.
原位分析和在线检测是激光诱导击穿光谱(LIBS)技术的一大优势,但是,在野外环境中,人们无法对样品进行统一预处理,面对各种形态的待测样品如何保证LIBS的检测精度是函待解决的一大难题。提出一种多谱线内定标的方法来解决上述问题,即通过求解多条分析谱线的强度和与内标元素谱线的强度比值来建立定标曲线,进而降低光谱信号波动带来的误差,提高线性相关性和检测精度。实验中以铅黄铜合金样品为例,采用LIBS对厚度不一(最大变化值为±2 mm)的铅黄铜样品中的Pb元素进行了定量检测研究,并分别采用传统定标法和多谱线内定标法对这种不规则样品进行校正和建立定标曲线。实验发现,对于不规则样品,传统定标法的检测精度大大降低,定标曲线没有明显的线性关系。当采用单条谱线的内定标方法时,定标曲线线性相关度大大提高,校正决定系数达到0.724 89。而采用多条谱线内标方法(考虑多条分析谱线的相对强度总和)计算发现,当选取5条Pb谱线(Pb 261.42 nm,Pb 280.20 nm,Pb 368.35 nm,Pb 405.78 nm和Pb 520.14 nm)进行计算时,定标曲线线性拟合度达到0.984 6,由此可见该方法消除了样品不规则所带来的光谱强度波动误差,显著提高了测量精度。虽然继续增加分析谱线数目可以进一步提升线性相关度,但是也会增加计算的复杂度,所以选择合适的分析谱线是十分重要的。此外,通过多谱线内标法也能一定程度上消除基体效应和光谱干扰等影响,是一种简单有效且具备普适性的数据处理方法。当然,该方法也存在一定的局限性(如样品成分分布极不均匀、样品表面极不规则致使激光能量低于击穿阈值等),不过通过调整和优化检测装置方案(例如增大激光能量、增大聚焦光斑、采用长焦距聚焦透镜等)可以更好的发挥该方法的优势。该研究内容可以为LIBS原位检测和在线检测的应用提供一种新思路。  相似文献   

8.
采用激光诱导击穿光谱技术分析安徽怀远农亢农场土壤样品中微量元素Mn的含量分布情况。实验中选取403.1 nm作为Mn元素的分析线为,土壤中基体元素Fe作为内标元素,选取的分析线为407.2 nm。选取10个土壤样品分别用传统定标方法和内标法建立定标曲线,并对4个待测样品浓度进行预测。实验结果表明,传统定标方法建立的定标曲线的拟合相关系数r为0.954,检测限为93 mg·kg-1,待测样品的测量相对误差最大为5.72%;而采用内标法建立的定标曲线的拟合相关系数r为0.983,测量的相对误差减小到4.1%,检测限为71 mg·kg-1。说明采用LIBS技术对土壤中微量元素Mn检测的可行性,同时,内标法一定程度上可提高测量的精确性。  相似文献   

9.
建立了利用激光诱导击穿光谱(LIBS)技术分析脐橙中Pb含量的多元线性回归定量分析模型.选用脐橙中Ca II 393.37 nm与Ca II 396.84 nm特征谱线强度之和、Pb I 405.78 nm特征谱线强度、在405.03—405.96 nm范围内Pb元素的谱线积分强度作为自变量,得到了回归关联式,通过方差分析和回归统计验证了关联式的可行性.结果表明,多元线性回归模型预测值与原子吸收光谱法检测值之间的相对误差最大值为12.99%,平均值为4.87%,并且利用这两种方法得到的结果拟合效果很好,拟合度达到0.995.这说明多变量的定标法能比较充分地利用光谱中的信息,降低基体效应的影响,从而提高LIBS定量分析的精确度,并对LIBS技术进一步应用于水果中重金属元素的定量检测提供了实验指导.  相似文献   

10.
作为煤质评价的重要指标之一,热值的快速、准确测量对电厂燃煤锅炉的优化燃烧和经济运行至关重要。采用激光诱导击穿光谱(LIBS)技术结合BP神经网络定量分析模型和聚类分析,以35个煤粉样品作为研究对象进行热值的定量分析。基体效应对LIBS光谱数据的显著影响,针对基于某类煤粉样品所建立的定标曲线不能直接用于不同煤种的定量分析,采用K-means聚类方法根据热值、灰分、挥发分把样品分为三类对训练集和预测集样品进行优化选择。通过谱线强度和热值变量相关性分析,同时考虑特征谱线的物理意义,最终提取12条元素谱线的峰值强度作为输入参数,建立BP神经网络模型对燃煤热值进行预测。定标结果表明,建立的神经网络模型具有良好的定量分析能力,定标曲线拟合度R2为0.996,热值预测值的相对误差低于3.42%,多次重复测量的相对标准偏差在4.23%以内。对聚类分析中3类样品具有不同的预测能力,采用峰值强度作为输入参数时,能够在一定程度上减弱试验参数波动和基体效应造成的影响。定量分析结果的重复性和准确性可以通过对不同类别的煤种分别建立BP神经网络模型来进一步改善。LIBS技术结合BP神经网络可以对煤粉热值进行定量分析,在现场在线/快速检测领域具有很好的应用价值和潜力。  相似文献   

11.
为了研究Na元素在水中的检测灵敏度,采用激光诱导击穿光谱检测NaCl溶液中的Na元素。选择NaⅠ589.0 nm和NaⅠ589.6 nm作为分析谱线,利用配置的六种浓度的NaCl溶液,采用外标法、内标法以及小波变换降噪法,给出了NaCl溶液中Na元素的定标曲线。发现通过内标法获得的定标曲线的线性相关系数r达到0.998,优于外标法(r=0.985),并且优于小波降噪后外标法(r=0.986)。相对外标法而言,小波变换降噪法有效降低了LIBS光谱中的连续背景光谱噪声,使LIBS的RSD从5.68%降至1.61%,从而使LOD值从50.8 μg·mL-1降至19.54 μg·mL-1, 内标法选择NaⅠ589.0 nm和NaⅠ589.6 nm钠原子谱线与内标参考谱线HⅠ656.2 nm氢原子谱线强度比值能有效的克服实验条件波动带来的影响,因此,内标法给出的NaCl溶液中Na元素的定标曲线的线性相关系数最大。而对于小波变换降噪处理方法,能够有效的降低LIBS光谱的连续背景带来的噪声,但不能克服实验条件波动对LIBS光谱信息的影响,因此小波变化降噪方法能够提高LIBS的RSD,但对降噪处理后的外标法给出的定标曲线的线性相关系数的提高影响不大。说明内标法有效的提高了检测灵敏度,减弱了实验条件波动带来的影响,定标曲线具有更好的线性相关性。而小波变换降噪处理后有效降低了LIBS光谱中的连续背景光谱噪声,实现LIBS检测限变低。谱线NaⅠ589.0 nm为分析谱线得到的RSD和LOD值小于以谱线NaⅠ589.6 nm为分析谱线的结果,NaⅠ589.0 nm和NaⅠ589.6 nm这两谱线的上能级分别为2.104和2.102 eV, 发现分析谱线的上能级对NaCl溶液中的Na元素的RSD和LOD值有影响,存在上能级大,而RSD和LOD值较小的现象。研究结果表明,LIBS技术可以实现溶液中元素的原位实时检测,并在水污染检测方面受到广泛关注。  相似文献   

12.
针对钢铁合金样品中存在基体效应复杂的问题,通过优化支持向量机模型的输入特征,建立多元素变量的定量分析模型,预测钢铁合金样品中Cr和Ni元素的含量。研究结果表明,分别以特征谱线的峰值强度和积分强度作为支持向量机模型的输入时,积分强度因为包含了谱线的谱宽和形状信息,模型训练效果较好;相比于单一元素谱线的特征信息,采用多元素的多条谱线信息输入支持向量机模型时,模型训练效果较好,这是由于多种谱线信息的输入可以有效校正基体效应的影响。在此基础上,通过归一化变量将内标法与多变量定标方法有效结合,不仅可以减小实验测量误差还能有效校正基体效应的影响,而且有效提高了模型的重复率和准确率。归一化变量作为支持向量机模型的输入变量,对待测样品S1和S2中Cr元素含量预测的相对误差为6.58%和1.12%,对Ni元素浓度预测的相对误差为13.4%和4.71%。通过归一化变量将内标法与多变量定标方法有效结合,可以充分发挥SVM算法的非线性学习优势,为LIBS技术应用于复杂样品定量定标分析提供理论基础。  相似文献   

13.
利用Nd ∶YAG脉冲激光器(波长:1064 nm)作为光源,在实验室自然大气环境下诱导产生土壤激光等离子体,通过等离子体原子发射光谱法定量分析了国家标准土壤样品中元素Cr的含量.实验上研究了在最佳实验条件下土壤中Cr的LIBS分析谱线,测定了Cr元素的定标曲线.实验结果表明,Cr元素浓度在(60—400)×10-6范围内,元素含量与光谱线强度之间有较好的线性关系;元素Cr浓度分析测量的相对标准偏差(RSD)为7.89%,定量分析结果与标准值的相对偏差为5.3%,Cr元素的检测限为1 关键词: 土壤污染 定量分析 激光诱导击穿光谱 定标曲线  相似文献   

14.
强度比定标法分析激光诱导击穿碳谱线   总被引:6,自引:1,他引:6  
 利用激光诱导击穿光谱技术,使样品在大气常压环境下被击穿形成等离子体,探测等离子体发射信号。选择混合样品所含的基体元素硅作为内标元素,分别根据碳谱线峰值强度、分析线和内标线峰值强度比建立不同的定标曲线。对两种定标曲线的拟合度、测量重复性以及定量分析结果准确度进行了研究。研究结果表明:强度比定标法在一定程度上可以提高定标曲线的拟合度和测量重复性,减小强度比定标法定量分析结果的误差,提高测量准确度。  相似文献   

15.
锰元素是植物所需的微量元素之一。采用激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)技术对土壤中锰元素进行定量分析。以46个土壤样品为研究对象,获取土壤激光诱导击穿光谱数据,选取锰元素403.1 nm的特征谱线为分析线。根据谱线强度与元素浓度建立定标曲线,相关系数仅为0.78,定标结果说明,由于土壤样品成分的复杂性,锰元素浓度受土壤基体效应影响严重,应根据锰元素在土壤中的存在形式,选取相关元素,建立多元非线性回归定量分析方法,消除基体效应,从而提高LIBS测量的准确性。在多元非线性回归方法中分别考虑碳和铁元素对锰元素浓度的影响。与定标曲线相比,在考虑碳和铁元素对锰元素影响时,LIBS预测浓度与参考浓度的相关系数为0.97,相对误差为3.2%~10.3%,测量的准确度得到提高。实验结果表明,将多元非线性回归方法和激光诱导击穿光谱技术结合可以对土壤中微量锰元素进行定量分析。  相似文献   

16.
复混肥中钾含量的激光诱导击穿光谱分析   总被引:2,自引:0,他引:2       下载免费PDF全文
将激光诱导击穿光谱技术(LIBS)应用于复混肥中的主要营养元素之一钾(K)元素的含量检测.样品中K养分的浓度较高,在等离子体形成过程中容易发生自吸收.通过分析谱线的激发能级、跃迁几率以及自吸收程度,确定最佳分析谱线为钾的原子线404.40 nm.同时为了提高LIBS分析复合肥样品的测量精度,分析了光谱测量稳定性随谱线信号平均次数的变化规律.结果显示,在本实验条件下,一次测量平均100个脉冲所得的光谱信号,其相对标准偏差较小.实验总共分析了9个复合肥样品,其中7个作为定标样品,建立K养分浓度的定标曲线,另外2个作为未知样品,用以检验LIBS分析K养分浓度的测量精确度.研究结果表明,定标曲线的线性拟合度为0.989,检验样品的绝对误差小于0.3%,体现了激光诱导击穿光谱技术快速分析复混肥中钾养分的潜力.  相似文献   

17.
采用激光诱导击穿光谱技术对复合肥中磷元素含量进行了定量分析。通过分析特征谱线的激发能级、跃迁概率和干扰情况,确定255.3和844.6 nm分别为磷元素、氧元素的分析线。实验中对18个复合肥样品进行了测量分析,用14个样品建立磷元素的定标曲线,相关系数r仅为0.83,因此采用多元非线性回归方法进行定量分析,提高测量的准确性。与传统定标曲线相比,在考虑氧元素特征谱线的影响时,LIBS测量值与参考值的相关系数r提高到0.98,测量的相对误差大大减小,仅为0.38%~1.70%。实验结果表明,LIBS技术具有快速分析复合肥中磷元素的潜力。  相似文献   

18.
激光诱导击穿光谱(LIBS)技术结合支持向量机(SVM)定量分析土壤中Cr元素的含量。利用波长为1 064 nm的Nd∶YAG脉冲激光器作为激发光源,采用光栅光谱仪和CCD分光探测不同重金属元素含量土壤样品的LIBS特征光谱。为了提高土壤中Cr元素定量分析的精度,分别采用多元线性回归分析和SVM两种方法对土壤中Cr元素的含量进行定量分析。研究结果表明,采用多元线性回归分析方法可以有效提高定量分析的精度,定标曲线拟合相关系数从传统定量分析方法的0.689提高到0.980;SVM定量分析方法训练集得到的定标曲线斜率近似为1,拟合相关系数为0.998,优于传统定量分析方法和多元线性回归分析方法,对检验集的预测相对误差均在2.57%以内。LIBS技术结合多元线性回归和SVM定量分析方法可以有效的提高土壤中Cr元素定量分析的稳定性和精度,校正土壤基体效应对Cr元素定量分析的影响。  相似文献   

19.
为推广LIBS技术在电解铝行业中的应用,充分发挥其快速、免制样、多元素同时检测的优势。利用激光诱导击穿光谱技术首次对铝电解生产得到的普铝中Fe和Si元素进行测试研究,探索了合理的实验参数条件,在合理的实验条件基础上建立定标曲线并对普铝中Fe和Si元素进行定量分析,结合国标GB/T 7999-2015《铝及铝合金光电直读发射光谱分析方法》考察LIBS测试结果的准确性。以Nd∶YAG脉冲激光器基频1 064 nm激光作为光源激发等离子体,采用多通道光栅光谱仪和ICCD检测器检测、记录光谱信息。首先探测了LIBS光谱谱线,并对谱线进行了归属;综合分析,选取AlⅠ 266.04 nm,SiⅠ 288.15 nm与FeⅠ 259.92 nm作为分析谱线用于定量分析研究。分别研究了触发延迟时间、1Q延迟时间、激光器设定电压对光谱信号强度及信噪比SNR的影响。实验结果表明,触发延迟时间4 μs、1Q延迟时间170~190 μs、激光器设定电压560 V对于Si与Fe元素定量测试分析而言是较为合理的实验参数。根据谱线强度与元素浓度的关系,采用内标法建立了定标曲线,Si与Fe元素定标曲线中相关系数分别为0.919 72与0.952 11,其相对标准偏差(RSD)分别为7.25%与6.34%,说明谱线强度与元素浓度具有良好的线性关系,并基于此模型对12个样品进行了定量测试分析。将测试结果与光电直读发射光谱测得的结果进行比对,结果表明,Fe含量的相对误差绝对值在0~17.3%之间,Si含量相对误差绝对值在0~14.3%之间。依照国标GB/T 7999-2015《铝及铝合金光电直读发射光谱分析方法》中规定的实验室之间分析结果相对误差≤17%的规定,12个测试样品中,试样Si含量测试100%符合允许差要求,试样Fe含量测试91.7%符合允许差要求。该实验结果表明,LIBS技术在电解铝普铝Fe和Si元素检测中具有一定的推广利用价值。  相似文献   

20.
为了提高土壤定量分析的精度,分别把偏最小二乘法(PLS)和最小二乘支持向量机(LSSVM)与激光诱导等离子体技术相结合对土壤中的Cu元素进行分析。对比分析了CuⅠ324.75 nm和CuⅠ327.40 nm两条特征谱线,最终选择CuⅠ324.75 nm作为分析谱线。首先对实验参数进行优化。通过对比激光能量、采集延时与信噪比之间的关系,确定最佳能量为90 mJ,最佳采集延时为1 000 ns。然后在最佳实验条件下采集五个不同浓度样品的特征光谱,并用内标法、 PLS和LSSVM建立定标模型。对比三种模型的拟合系数、均方根误差和平均相对误差,发现由于土壤基体效应和自吸收效应的影响,内标法的定标模型性能较差,拟合程度未达到实验要求,而均方根误差和平均相对误差的数值过大,无法满足实验对于精确度和稳定性的要求。用PLS对定标模型进行校准,相对于内标法而言,定标模型的精确度和稳定性均有明显的提高,R~2由0.870 1提高到0.985 1,训练集和预测集的均方根误差均下降到了0.1 Wt%量级,平均相对误差虽有所下降,但仍然无法达到实验要求,说明PLS虽然可以在一定程度上提高定标模型的精确度,但在提高稳定性方面仍有欠缺,并不能很好的降低土壤的基体效应与自吸收效应。与内标法和PLS的定标模型相比, LSSVM定标模型的精确度和稳定性最好,R~2提高到了0.997 6,模型中的数据点基本分布在拟合曲线上,具有良好的线性相关性。相比于内标法, LSSVM定标模型训练集的均方根误差由3.448 8 Wt%下降到0.018 7 Wt%,预测集的均方根误差由1.280 7 Wt%下降到0.149 1 Wt%,体现稳定性的平均相对误差降低了6.24倍。与PLS定标模型相比, LSSVM定标模型的各个参数均有大幅降低,特别是平均相对误差由7.455 6%下降到2.137 0%,可以满足稳定性要求。说明在提高定标模型精确度与稳定性方面, LSSVM算法更具有优势,能够更好地降低土壤基体效应和自吸收效应带来的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号