首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过水热法和光还原方法成功地制备了铌酸锰-还原氧化石墨烯复合光催化剂。这种复合光催化剂可以明显地提高光催化降解亚甲基蓝的光催化活性,降解效率在60 min内达到了78.2%,是单体铌酸锰降解效率的2倍。通过活性物质捕获实验的研究,增强的光催化性能可以归因于还原氧化石墨烯加速了光生电子-空穴的分离效率,进而解决了低光催化活性的问题。  相似文献   

2.
通过水热法和光还原方法成功地制备了铌酸锰-还原氧化石墨烯复合光催化剂。这种复合光催化剂可以明显地提高光催化降解亚甲基蓝的光催化活性,降解效率在60 min内达到了78.2%,是单体铌酸锰降解效率的2倍。通过活性物质捕获实验的研究,增强的光催化性能可以归因于还原氧化石墨烯加速了光生电子-空穴的分离效率,进而解决了低光催化活性的问题。  相似文献   

3.
利用水热法合成具有层级片状结构的ZnO纳米片,再利用原位生长法得到不同CdS复合比的CdS/ZnO复合光催化剂。采用X射线粉末衍射(XRD)、紫外-可见漫反射吸收光谱(UV-Vis)等手段对所制备的光催化剂进行了表征,并考察了CdS/ZnO在可见光下光催化降解亚甲基蓝溶液的催化性能。研究表明,经CdS修饰后,其光催化性能明显提高。当亚甲基蓝初始浓度为5mg·L~(-1),催化剂用量为2g·L~(-1)时,光反应240min后,亚甲基蓝的降解率高达96%。同时,对CdS/ZnO复合光催化剂可见光降解亚甲基蓝的催化机理进行了分析。  相似文献   

4.
采用沉积-沉淀及光还原法制备了Ag@AgBr等离子体光催化剂,利用X射线衍射、扫描电镜和紫外-可见漫反射光谱对其进行了表征,并考察了该等离子体光催化剂在可见光(λ420nm)下的催化性能,探讨了催化剂用量、pH值、亚甲基蓝初始浓度、H2O2添加量、循环使用及捕获剂对Ag@AgBr催化性能的影响.结果表明,当亚甲基蓝的初始浓度为10mg/L,催化剂用量为1g/L,pH=9.8时,光照12min后,亚甲基蓝的降解率高达96%,且样品经5次循环使用后活性基本保持不变;而少量H2O2的添加对光催化活性影响不大,过量的H2O2会降低光催化活性;乙二胺四乙酸捕获空穴后比异丙醇捕获·OH后的光催化活性降得更低.同时,对Ag@AgBr等离子体光催化剂可见光降解亚甲基蓝的催化机理进行了分析.  相似文献   

5.
以钼酸铵和C_3N_4为前驱体,利用浸渍法成功制备了高性能MoO_3-C_3N_4复合光催化剂,利用X射线衍射(XRD)、傅里叶红外(FT-IR)、高分辨电镜(HRTEM)及N2吸附-脱附曲线等测试手段对所得MoO_3-C_3N_4光催化剂进行了结构和形貌表征。以可见光下光催化降解甲基橙反应表征MoO_3-C_3N_4的光催化活性。实验结果表明,MoO_3-C_3N_4光催化剂具有非常好的光催化降解性能,且MoO_3含量对反应活性产生显著影响。当MoO_3含量为1.6%(w/w)时光催化活性最好,其速率常数达到C_3N_4的50倍。通过研究发现该复合催化剂的高活性来自于其Z型光生载流子传输过程,抑制了光生电子空穴对的复合并延长了引入MoO_3产生的载流子的寿命。  相似文献   

6.
理想的石墨烯具有二维平面结构,其具有良好的机械性能、热导率、高电子迁移率和量子霍尔效应。本文以改进的Hummers法制得氧化石墨烯(Graphene Oxide),超声处理和水热法制备了氧化石墨烯(GO)负载量分别为1.0 wt%、1.5 wt%,2.0 wt%,2.5 wt%的TiO_2/GO复合材料,并通过XRD、TEM等表征手段观察了复合材料的晶相和结构,探讨光催化降解亚甲基蓝性能。结果表明:较之TiO_2,复合材料均具有更大的表面积、更好的亲水性和更强的光催化性能;反应浓度均为2 g·L~(-1)的复合材料,光催化降解10 ppm亚甲基蓝,氧化石墨烯负载量为1.5 wt%的TiO_2/GO复合材料,1 h光催化降解率可达86%,效果最佳。TiO_2/GO复合材料吸附容量大,稳定性良好,能够高效光催化降解偶氮型染料,有望在进一步改良性能后广泛应用于降解工业废水领域。  相似文献   

7.
用简单可行的方法合成了功能化的石墨烯(GNSPF6)和磁铁掺杂的还原氧化石墨烯(RGO-Fe3O4),并进一步研究了pH值、接触的时间和温度对它们吸附亚甲基蓝(MB)的影响.结果表明,随着pH值和温度的增加其吸附量也随之变大,从而说明该吸附过程是自发吸热的.因为GNSPF6的吸附过程只用了不到20min的时间,所以它的吸附是高效的.用经典的准一级反应、准二级反应和粒内扩散模型对其吸附过程进行动态分析,从结果可以发现,准二级动力学模型比准一级动力学模型更适用于描述吸附过程.采用传统的Langmuir,Freundlich和L-F吸附等温线模型来模拟分析数据,在20℃时,由Langmuir吸附等温线模型模拟分析得知GNSPF6和RGO-Fe3O4对MB的最大吸附量分别为374.4和118.4mg/g.  相似文献   

8.
采用分子动力学方法研究了亚甲基蓝在不同氧化度的氧化石墨烯表面的吸附行为及其动力学性质, 从微观角度讨论了亚甲基蓝由体相到氧化石墨烯表面的吸附过程及主要作用机制, 并通过亚甲基蓝分子动力学性质解释了氧化石墨烯的氧化度和含氧官能团类型对吸附行为的影响. 结果表明, 吸附过程中, 亚甲基蓝主要受氧化石墨烯表面含氧官能团的静电作用, 以近似垂直氧化石墨烯表面的方向进入, 并以平行的方式吸附于氧化石墨烯表面; 亚甲基蓝不易脱离高氧化度氧化石墨烯的吸附位点; 吸附平衡过程中, 相对于低氧化度的氧化石墨烯, 高氧化度氧化石墨烯对亚甲基蓝的束缚性更强, 同时与亚甲基蓝间相互作用更强; 含氧官能团中的环氧基与亚甲基蓝间的作用势能更强, 且羟基能够与亚甲基蓝间形成氢键结构, 共同保障了亚甲基蓝吸附层的稳定性.  相似文献   

9.
近年来,光催化技术在解决环境污染和能源短缺方面展现出巨大潜力.二硫化钼(MoS_2)作为一种二维层状光催化材料受到广泛关注.MoS_2具有可调的带隙(1.2-1.9 eV)、低的成本和高的存储量,是一种可替代铂的理想助催化剂.然而,MoS_2本身光催化活性较低.理论和实验已经证明,MoS_2只有暴露的边缘具有催化活性,并且MoS_2的光生电子-空穴对容易复合,导致其光催化效率低.增加暴露的活性边缘以及有效分离电子-空穴对是提高MoS_2光催化活性的关键.而石墨烯气凝胶是一种理想的催化剂载体,其高比表面积和高空隙率可以有效提高催化剂利用率.同时,其高导电性可以促进光生电子-空穴对分离.因此,将MoS_2负载到石墨烯气凝胶上制备宏观可回收光催化材料具有广阔的应用前景.然而,目前尚未见到有关MoS_2/石墨烯气凝胶光催化产氢以及还原Cr(Ⅵ)的报道.本文以钼酸铵为钼源,硫脲为硫源和还原剂,同时加入氧化石墨烯及其还原剂氨水,通过一步水热法制备出二硫化钼/还原氧化石墨烯(MoS_2/RGO)水凝胶.最后通过冷冻干燥得到MoS_2/RGO气凝胶.经光催化测试发现其产氢达到38.9μmol/g,光还原Cr(Ⅵ)达到92%,明显高于MoS_2粉体.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见-近红外吸收光谱(UV-Vis-NIR)及红外光谱(FTIR)等手段研究了其光催化性能提高的原因.XRD测试显示,过量的NH_4~+离子插入到MoS_2层与层之间增加了(002)面的晶面间距;SEM观察到在形成气凝胶后,MoS_2从粉末的片状转变成花状,这是因为氧化石墨烯上的含氧官能团促进MoS_2成核同时限制其生长导致的;TEM观察到MoS_2上存在大量的脱节和扭曲,这是由于过量硫脲阻碍了MoS_2晶体的取向生长而产生缺陷;XPS发现,除了形成MoS_2之外,还形成了MoO_2,同时大量的暴露边缘导致不饱和硫产生;FTIR表明MoS_2与RGO之间通过氢键链接在一起;UV-Vis-NIR吸收光谱显示,MoS_2/RGO气凝胶在可见光区具有很强的吸收,这是黑色的RGO以及光在花状结构的不断反射共同作用导致的.综合以上结果,我们提出了MoS_2/RGO光催化性能增强的机理.首先,三维的气凝胶网状结构以及花状结构的MoS_2所带来的高比表面积(599.7 m~2/g)使得材料对H~+和Cr(Ⅵ)吸附量增加;其次,黑色的RGO以及入射光在花状结构层片间的不断反射增加了MoS_2/RGO气凝胶对可见光的吸收;最后,RGO本身的高导电性促进了光生电子-空穴有效分离,电子通过RGO快速转移到材料表面参与光催化反应.因此,将MoS_2负载在RGO上可提高光催化效率.另外,低密度的MoS_2/RGO气凝胶(56.1 mg/cm~3)可以有效吸附有机溶剂且容易回收.综上所述,本文制备的MoS_2/RGO气凝胶光催化材料在环境与能源方面表现出潜在的应用前景.  相似文献   

10.
以氧化石墨烯作为载体,通过一种方便的自组装方法将富里酸分子固定在氧化石墨烯上,合成新型复合光催化材料GO-FA,并通过SEM、XRD、XPS等一系列的分析手段对其进行表征测试.同时,以尼泊金甲酯模拟废水,结合自由基捕获试验对降解机理进行探讨并进行对不同降解影响因素进行探究.表征结果显示富里酸颗粒包裹在氧化石墨烯表面,表...  相似文献   

11.
近年来,本课题组利用简单的一步水热法,将石墨烯和铁酸锰、铁酸镍进行掺杂,先后制备出石墨烯铁酸锰和活性炭铁酸镍纳米光催化材料,并发现在可见光辐射作用下,这两种光催化剂均能利用可见光能量催化分解过氧化氢产生活性因子,从而有效地降解氨.基于此,本文采用简单的水热法成功制备出新型的高效多相石墨烯铁酸铋(rG-BiFeO_3)催化剂,并尝试在不添加H_2O_2的条件下进行光降解氨氮实验.结果表明,该复合光催化剂仍可接受可见光辐射,在rG和BiFeO_3的协同作用下高效地光分解氨氮.由X射线衍射结果计算出rG-BiFeO_3的平均粒径约为18.5 nm.通过清晰的rG-BiFeO_3的透射电镜图可以观察到,BiFeO_3纳米颗粒物较均匀地分散在r G的二维表面上.对比BiFeO_3和rG-BiFeO_3的傅里叶变换红外光谱可以发现,rG和BiFeO_3之间可能形成了化学键.拉曼光谱结果表明,相对于纯的GO,rG-BiFeO_3拉曼谱线的D带和G带发生了蓝移,表明石墨烯铁酸铋复合材料中的GO被充分还原成石墨烯.对比BiFeO_3和rG-BiFeO_3的紫外-可见漫反射光谱发现,rG-BiFeO_3的漫反射光谱发生了红移,表明rG-BiFeO_3光催化材料对可见光的响应程度进一步提高.比表面积测定表明,BiFeO_3的比表面积为21.0 m~2/g,而rG-BiFeO_3催化剂的比表面积则增加到48.6 m~2/g,说明rG-BiFeO_3的吸附性能将得到很大提高.可见光催化反应结果表明,在不添加H2O2,p H=11的条件下,0.2 g rG-BiFeO_3对50 mg/L NH_3-N的降解率达到91.2%.动力学研究表明,BiFeO_3光催化剂氧化氨氮反应遵循一级反应动力学规律.另外,由于BiFeO_3纳米材料本身具有一定的弱磁性,所以BiFeO_3和r G的复合材料也具有一定的磁性,较易回收.催化剂经过7次循环使用后,仍然具有很高的光催化活性.根据已有文献报道,吸附在催化剂表面的氨氮被氧化的路径有两条:(1)氨在被氧化为NH_2,NH和N_2H_x+y(x+y=0,1,2)等一系列中间产物后,最终被分解为氮气;(2)氨被氧化为中间产物HONH_2,最终分解为硝酸盐和亚硝酸盐.本文利用紫外-可见分光光度计对rG-BiFeO_3光降解体系下的氨溶液进行了全波长扫描,在206和211 nm处未检测到任何吸光度,从而排除了氨氮最终分解产物为硝酸盐和亚硝酸盐的可能性.这意味着rG-BiFeO_3可见光降解氨体系符合第一种氧化路径.进一步的机理研究表明,反应过程中石墨烯与铁酸铋之间的协同作用所产生的空穴、超氧阴离子自由基和羟自由基共同将NH_3直接氧化成N_2,其中羟基自由基在整个氧化分解过程中起着最主要的作用.  相似文献   

12.
采用浸渍法制备了MoO3/P25催化剂(MoO3/P25(x),x为MoO3与P25质量比),用X射线衍射、紫外-可见漫反射光谱、傅里叶变换红外光谱及拉曼光谱等手段对样品进行了表征,并用催化降解亚甲基蓝考察了催化剂在可见光区的催化活性.结果表明,MoO3在P25表面最大单层负载量对应的MoO3与P25质量比在0.1左右.单层分散的氧化钼物种与P25之间有较强的相互作用,降低了P25禁带宽度,提高了催化剂对可见光的吸收.当MoO3与P25质量比大于0.1时,会生成晶相MoO3,催化剂对可见光的吸收反而随MoO3担载量增加而降低.催化剂禁带宽度不是决定其可见光下催化降解亚甲基蓝活性的唯一因素.具有适宜禁带宽度和一定晶相MoO3含量的MoO3/P25(0.25)表现出最佳活性.  相似文献   

13.
采用一种新颖有效的席夫碱化学法合成吡啶共聚改性的g-C_3N_4,其可见光催化产氢性能较(由尿素为前驱物制备的)纯g-C_3N_4显著增强。在此基础上,又进一步通过一步煅烧的方法构建了吡啶改性g-C_3N_4和N掺杂还原氧化石墨烯(N-r GO)的复合物,其产氢活性得到了进一步地提高,氢气产量最高达到304μmol?h-1,分别为纯g-C_3N_4和吡啶改性g-C_3N_4的11.7倍和3.1倍。除了其增强的可见光吸收能力,增大的表面积,我们认为:吡啶环作为分子内电子受体,N-r GO作为"电子转移活性位",二者共同促进了光生载流子分离和转移,从而显著增强了该复合体系的光催化活性。  相似文献   

14.
采用水热法制备了BiOBr/石墨光催化剂,并利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、固体荧光(PL)和紫外-可见漫反射光谱(UV-visDRS)等方法对其进行表征。以二苯并噻吩的环己烷溶液为模拟油品,考察反应温度、石墨烯负载量和氧化剂H_2O_2用量等条件对BiOBr/石墨光催化氧化脱除模拟油中DBT的性能的影响,不同模型化合物的光催化活性为DBT4,6-DMDBTBT,根据实验结果提出了BiOBr/石墨光催化剂氧化DBT的机理。  相似文献   

15.
通过同步还原聚苯胺(PANI)-氧化石墨烯(GO)复合物制备得到了聚苯胺-还原氧化石墨烯(PANI-rGO)。由于复合材料中PANI提供了氧化还原反应的电荷,使得PANI-rGO复合材料具有较大的比电容。通过扫描电子显微镜(SEM),紫外-可见光谱和热重量分析法(TGA)对复合物进行了结构和形态的分析。复合材料的形态呈薄片状,聚苯胺是均匀地包裹在氧化石墨烯上的。当电流密度为20 A·g~(-1)时,PANI-rGO复合材料的比电容可高达1069 F·g~(-1)(1.71 F·cm~(-2)),是PANI-GO复合材料的五倍,这是因为复合材料中还原氧化化石墨烯的大比表面和高电导性所引起的。  相似文献   

16.
17.
杨荔  刘旸  张瑞阳  李伟  李璞  王星  周莹 《催化学报》2018,39(4):646-653
近年来,光催化技术在去除以NO为代表的诸多室内气体污染物方面展现出巨大的潜力.单质铋和铋系氧化物,非金属氧化物以及钙钛矿等众多半导体光催化材料均具有优异的NO降解效率,但很难控制氧化产物.因而会生成大量毒性更强的中间产物NO2造成二次污染.因此,寻求一种清洁、高效,且具有良好选择性的光催化材料成为了亟待解决的问题.六方相三氧化钨(h-WO_3)的价带位置较正,氧化电位较高,具有很强的氧化能力,是一种良好的氧化性光催化半导体材料.然而,WO_3催化材料多为粉末状,不仅容易团聚,难以回收利用并且会堵塞检测气路.同时,WO_3本身存在的电子-空穴复合率高,弱的可见光响应性等问题使其光催化活性较低.因而,制备具有良好可见光响应,高电子-空穴分离效率的一体化WO_3材料是其广泛应用前急需解决的问题.而石墨烯气凝胶是理想的催化剂载体,其较高的比表面积以及多孔状结构可有效地增加催化剂的暴露面积,提升催化剂利用率;更重要的是,氧化石墨烯(GO)具有极高的导电率,可作为电子受体加速电子-空穴对的分离而提升光催化活性.因此,以GO作为基体材料,构建WO_3/GO气凝胶一体化材料有良好的应用前景.然而,现在还鲜见有关宏观WO_3/GO气凝胶光催化降解NO的报道.本文以偏钨酸铵为钨源,利用体积分数为25%的冰醋酸在180ⅹC条件下制备六方相三氧化钨.通过机械搅拌以及冷冻干燥法制备WO_3/GO气凝胶.经光催化氧化NO测试发现其可见光下降解率可达51%,是WO_3粉体的3.3倍,并且NO_2生成率仅为0.5%,远远低于其他相关光催化材料.采用了X射线衍射(XRD),透射电镜(TEM),X射线光电子能谱(XPS),紫外-漫反射分光光度计(UV-DRS),傅里叶红外光谱(FTIR)和荧光光谱(PL)等手段研究了其光催化性能提高的原因.XRD测试显示,复合材料主体为h-WO_3,说明GO的引入并未破坏材料晶体结构;TEM和BET测试发现,在加入GO之后h-WO_3分散性变好,比表面积变大,从而可暴露更多的光催化活性位点.UV-DRS吸收光谱可以看到WO_3/GO气凝胶材料的吸收边发生了显著的红移,其禁带宽度从3.44 eV减小到3.16 eV,这可能是GO影响了WO_3的能带结构所致.同时PL结果表明,引入了GO之后,气凝胶材料的非辐射跃迁程度明显减小表明其电子-空穴对的复合得到了显著抑制,电子迁移显著加强.综合以上结果,可以得到WO_3/GO光催化性能提升以及良好的产物选择性的原因.首先,三维气凝胶材料的结构提升了催化剂的有效利用率,较大的比表面积暴露了更多的活性位点.其次,GO的引入减小了复合材料的禁带宽度,并使其吸光性能有所改善,产生了更多的光生电子和空穴.最后,GO本身极高的导电性,使光生电子-空穴对得以有效的分离,一方面,电子通过GO迅速转移到材料表面来参与光催化反应;另一方面,电子的快速转移抑制了电子-空穴对的复合,进而提高光催化性能,而且较正的价带位置保证了NO较为彻底的氧化为NO3–.因此,相比传统粉末WO_3催化材料,一体化的WO_3/GO气凝胶不仅显著提升了NO降解率,同时严格抑制了毒副产物NO2的生成,同时更具有容易回收利用,不存在二次污染的优点.综上所述,WO_3/GO一体化气凝胶光催化材料有望在环境净化与能源领域表现出良好的应用前景.  相似文献   

18.
以亚甲基蓝(MB)为模拟废水污染物,Ag3PO4为光催化剂,固定污染物初始浓度、催化剂用量、光照强度和照射时间等,探讨不同浓度的无机阴、阳离子(NO-3、Cl-、SO2-4、Na+、Ca2+、Mg2+、Al 3+)对Ag3PO4光催化降解偶氮染料MB的影响.结果表明,Na+和NO-3对Ag3PO4光催化降解MB没有明显的影响;Cl-在一定程度上对MB的降解具有促进作用;SO2-4、Ca2+、Mg2+、Al3+在不同程度上抑制了该光催化反应的进行,且抑制顺序为SO2-4Ca2+Mg2+Al 3+.  相似文献   

19.
《电化学》2016,(3)
通过ZnO模板辅助电沉积法制备了中空网状笼还原氧化石墨烯,具有纳米管、多孔结构、网状结构和3D微米中空笼等多层次架构.这样的结构能够同时促进电化学活性物种的传输,提高电极材料的利用率,以及提升超级电容器性能.该类中空网状笼还原氧化石墨烯做超级充电器电极材料时表现出了优良的电化学性能,研究结果显示,在1.0 A·g~(-1)时比电容达到393 F·g~(-1).而且当电流密度从1.0 A·g~(-1)增加到20 A·g~(-1),电容仅衰减了21.2%,10000周循环后比电容损失小于1%,表明具有优异的电容稳定性.  相似文献   

20.
太阳能因其环保清洁和来源丰富的特性被认为是最理想的资源之一.而光催化水分解是将太阳能转化为化学能的众多转换技术中,使用最广泛的策略之一.但H2和O2的逆反应显著降低了光催化水分解的效率,并且在实际应用中需要高昂的气体分离成本.因此,找到一种既可实现光催化有效水分解,同时抑制逆反应的策略具有十分重要的意义.到目前为止,为了实现光生电荷的有效分离,构建一维(1D)异质纳米结构光催化剂,被认为是抑制逆反应最有效的策略之一.其中哑铃状纳米结构,如Au-SiO2,Au-Fe3O4,Cu1.94S-CuS,Au-PbS(PbSe),Cu-Ag,Ag-Fe3O4,在促进光生电荷有效分离方面具有很大优势.但关于上述哑铃状纳米结构材料合成条件相对复杂,生长机理尚不清楚.对此,我们通过一种简便的合成策略制备了Au纳米棒/TiO2纳米哑铃结构光催化剂(Au NRs/TiO2 NDs).TiO2纳米颗粒(NP)仅包裹在Au NRs的两端.由于其独特的结构,可以实现电子空穴的定向分离,并减少它们在光照射下的复合,从而显著地提高电荷分离效率.同时,形成了氧化和还原反应的空间分离区域,从而有效地抑制了逆反应.通过SEM,XRD,和UV-Vis研究了可控合成哑铃状结构形态的关键因素.发现反应温度和酸度对Au NRs末端TiO2的包裹量有显著影响.基于此,我们提出了Au NRs/TiO2 NDs结构光催化剂的合成机理.并且通过改变加入的NaHCO3含量精准调节TiO2在Au NRs两端的包覆量,从而逐步提高Au NRs/TiO2 NDs光催化剂的产氢活性.在不断优化条件下,H2产率可达60264μmol/g/h,大约是报道的Au/TiO2光催化剂6倍.而电化学测试结果显示,在UV光照射下,Au NRs末端TiO2的包裹量越大,光电流相应越大.进一步证明光生电子定向从TiO2注入到Au NRs中,发生还原反应,而空穴留在TiO2上,发生氧化反应,从而实现氧化还原反应的分区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号