首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Liquid crystals》2001,28(9):1343-1352
The synthesis of new monodentate heterocyclic ligands 5-(4-pyridyl)-2-alkyltetrazole (L1a,b) and 4-[5-(2-alkyltetrazole)]aryl-4'-pyridinecarboxylate (L2a,b,c) containing two or three aromatic or heterocyclic rings (tetrazole, pyridine and benzene) and preparation of their corresponding silver(I) and palladium(II) complexes (Ia,b,c and IIa,b,c) are described. The thermal behaviour of the ligands and complexes was characterized by polarizing optical microscopy. The ligands and the complexes Ia,b,c and IIc showed no liquid crystalline phase. The complexes IIa,b showed mesomorphic behaviour, exhibiting smectic A enantiotropic mesomorphism X-ray diffraction measurements for complex Ia showed monodentate coordination of N-pyridine, and no coordination on the nitrogen atoms of the tetrazole ring.  相似文献   

2.
Reactions of AgO2C2F3 with (E)-N-(pyridylmethylene)aniline in which the pyridyl N is in the p- or m-position yielded two 1-D coordination polymers, [(AgO2C2F3)2(La)2]n (La = (E)-2,6-diisopropyl-N-(pyrid-3-ylmethylene)aniline) (1) and [(AgOC2F3)2(Ld)2]n (Ld = (E)-2,6-diisopropyl-N-(pyrid-4-ylmethylene)aniline) (5), and three discrete complexes, [(AgO2C2F3)2(La)4] (2), [AgO2C2F3(Lb)2] (Lb = (E)-N-(pyrid-4-ylmethylene)aniline) (3) and [(AgOC2F3)2(Lc)4] (Lc = (E)-2,6-dimethyl-N-(pyrid-4-ylmethylene)aniline) (4). The structures were determined by MS, FT-IR and NMR spectroscopies, elemental analysis and single crystal XRD. 1 is an organometallic coordination polymer with silver in η1-arene coordination, but is a discrete dimeric complex 2 when crystallized from warm diethylether. The geometries around silver(I) in 1 and 4 are tetrahedral, ‘inverted seesaw’ in 2 and T-shaped in 3 and in all the anion seems to play a role. Ag(I) centers in 5 have distorted trigonal bipyramid and inverted seesaw geometries. The trifluoroacetate anions in these complexes display variable monodentate and short bridging coordination patterns. All complexes absorb and strongly emit UV-Vis radiation at room temperature.  相似文献   

3.
A series of anionic five-coordinate binary oxorhenium(V) complexes with dithiolato ligands, Bu4N[ReO(L1)2] (1a), Bu4N[ReO(L2)2] (1b), and Bu4N[ReO(L3)2] (1c), and a series of neutral octahedral ternary oxorhenium(V) complexes of mixed dithiolato and bipyridine ligands, [ReO(L1)(bpy)Cl] (2a), [ReO(L2)(bpy)Cl] (2b), and [ReO(L3)(bpy)Cl] (2c) (where L1H2 = ethane-1,2-dithiol, L2H2 = propane-1,3-dithiol, L3H2 = toluene-3,4-dithiol, and bpy = 2,2′-bipyridine), were isolated and characterized by physicochemical and spectroscopic methods. The solid state structure of 1c was established by X-ray crystallography. All the mononuclear oxorhenium(V) complexes are diamagnetic. The redox behavior of all the complexes has been studied voltammetrically.  相似文献   

4.
Abstract

The organotin(IV) complexes, SnPh2La (1), SnMe2La (2), SnBu2La (3), SnPh2Lb (4), SnMe2Lb (5), SnPh2Lc (6), SnMe2Lc (7), and SnBu2Lc (8) were obtained by reaction of SnR 2Cl2 (R = Ph, Me, and Bu) with 1-(5-bromo-2-hydroxybenzylidene)-4-phenylthiosemicarbazide (H2La), 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide (H2Lb), and 1-(2-hydroxy-3-methoxybenzylidene)-4-phenylthiosemicarbazide (H2Lc). The synthesized complexes have been investigated by elemental analysis, IR, 1H NMR, and 119Sn NMR spectroscopy. The data show that the thiosemicarbazone acts as a tridentate dianionic ligand and coordinates via the thiol group, imine nitrogen, and phenolic oxygen. The coordination number of tin is 5. The in vitro antibacterial activities of the ligands and their complexes have been evaluated against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and compared with the standard antibacterial drugs.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures and tables]  相似文献   

5.
Preparation of the ligands HL1 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-ethylphenol; HL2 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-methoxyphenol and HL3 = 2,6-[(N-phenylpiperazin-1-yl)methyl]-p-nitrophenol are described together with their Cu(II) complexes with different bridging units. The exogenous bridges incorporated into the complexes are: hydroxo [Cu2L(OH)(H2O)2](ClO4)2.H2O (L1=1a, L2 =1b, L3 =1c), acetato [Cu2L(OAc)2]ClO4.H2O (L1 =2a, L2 =2b, L3 =2c) and nitrito [Cu2L1(NO2)2(H2O)2]ClO4.H2O (L1=3a, L2 =3b, L3 =3c). Complexes1a,1b,1c and2a,2b,2c contain bridging exogenous groups, while3a,3b,3c possess only open μ-phenolate structures. Both the ligands and complexes were characterized by spectral studies. Cyclic voltammetric investigation of these complexes revealed that the reaction process involves two successive quasireversible one-electron steps at different potentials. The first reduction potential is sensitive to electronic effects of the substituents at the aromatic ring of the ligand system, shifting to positive potentials when the substituents are replaced by more electrophilic groups. EPR studies indicate very weak interaction between the two copper atoms. Various covalency parameters have been calculated.  相似文献   

6.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

7.
ABSTRACT

Two new binuclear Cu(II) complexes Cu2L4(DMS)2 (1) and Cu2L4(3BrPy)2 (2) where L = para-chlorophenyl acetate, DMS = dimethylsulfoxide and 3BrPy = 3-bromopyridine have been synthesised and characterised using FT-IR, single crystal XRD analysis, absorption and conductance studies. In both the complexes copper(II) ion lies in distorted square pyramidal geometry where the apical position is occupied by pyridine in monodentate fashion while the equatorial positions are occupied by four carboxylate ligands in bidentate coordination mode. The supramolecular structures of the complexes arise primarily as a result of C–H…O and H–C…H types of interactions and are different owing to the different apical ligands. The DNA-binding activity of the complexes has been studied through absorption spectroscopy, viscometry and competitive ethidium bromide displacement techniques. These techniques indicated a mixed electrostatic and intercalative mode of interaction with DNA-binding constant values Kb of 1.98 × 104 M?1 and 2.86 × 104 M?1 for complexes 1 and 2, respectively. These activities represent the preliminary biological relevance of the synthesised complexes.  相似文献   

8.
Three half-sandwich ruthenium complexes [Ru(p-cymene)LCl] containing salicylbenzoxazole ligands [LH = 2-(5-methyl-benzoxazol-2-yl)-4-methyl-phenol (2a), LH = 2-(5-methyl-benzoxazol-2-yl)-4-chloro-phenol (2b), and LH = 2-(5-methyl-benzoxazol-2-yl)-4-bromo-phenol (2c)] were synthesized and characterized. All half-sandwich ruthenium complexes were fully characterized by 1H and 13C NMR spectra, MS, elemental analyses, and UV–vis as well as cyclic voltammetry (CV). The molecular structures of 2a, 2b, and 2c were confirmed by single-crystal X-ray diffraction. Single-crystal X-ray structures show that the synthesized ruthenium complexes are three-legged piano-stools with a six-membered metallocycle formed by coordination of the bidentate salicylbenzoxazole ligands to the metal centers. Data from CV and UV–vis absorption of the ruthenium complexes indicated that by changing the substituent on the para position of (donating or withdraw group) the salicylbenzoxazole ligands, minor changes in redox and electronic properties of the ruthenium complexes were observed.  相似文献   

9.
Four heterocyclic Schiff-base ligands derived from condensation of 4-amino-1,3 dimethyl-2,6 pyrimidine-dione with 2-hydroxybenzaldehyde, 2-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde and 4-(dimethylamino) benzaldehyde, (HL1, L2, HL3and L4), respectively, and their Co(II) and Ni(II) complexes have been prepared and characterized via elemental analysis, molar conductance, magnetic moment, thermal and XRPD analysis as well as spectral data (IR, 1H-NMR, mass and solid reflectance). IR data reveal that the ligands are bidentate neutral ligands except HL1, which is monobasic tridentate with coordination sites azomethine (N), carbonyl (O) and phenolic (O). Conductance data suggest that all complexes are non-electrolytes, except cobalt(II) complexes of L2and HL3are 1 : 1 electrolytes. The mass spectra confirm the proposed structure of the ligands and their complexes. The solid reflectance spectral data and magnetic moment measurements suggest octahedral, tetrahedral and square planar geometrical structures for the metal complexes. The spectral data were utilized to compute the important ligand field parameters B, β and Dq; LFSE also was calculated. The thermal behavior is also studied. Antibacterial and antifungal properties of the ligands and their complexes show broad-spectrum activities and the metal complexes show higher activity than the free ligands.  相似文献   

10.
The crystal structures of copper(II) nitrate complexes with 2-(2-hydroxybenzylideneamino)-2-hydroxymethylpropane-1,3-diol (HL) and 2-hydroxymethyl-2-(2-hydroxy-5-nitrobenzylideneamino)propane-1,3-diol (HL1) were determined. The resulting complexes were formulated as [Cu3OL3(H2O2]NO3 · 3H2O (I) and [Cu(H2O)L1]NO3 (II). The crystals of I are monoclinic, a = 17.809(4) Å, b = 30.549(6) Å, c = 18.962(4) Å, β = 115.36(3)°, space group Cc, Z = 8, R = 0.0482. Complex I is composed of two independent three-dimensional µ3-oxo complexes; the coordination polyhedron of the copper atoms in both compounds is an elongated tetragonal bipyramid. The coordination polyhedron of the third Cu atom is a tetragonal pyramid. The bases of the pyramids are composed of the oxygen atoms of the phenol and alcohol OH groups, the imine N atom of ligand L, and µ 3-oxo atoms. The phenol and water O atoms serve as the apices in both the tetragonal bipyramids. The crystals of II are triclinic, a = 6.062(1) Å, b = 7.701(2) Å, c = 16.162(3) Å, α = 88.15(3)°, β = 84.94(3)°, γ = 78.13(3)°, space group P1¯, Z = 2, R = 0.0272. Complex II is composed of polymer chains formed by coordination bonds between the copper atom and two O atoms of the amino alcohol in the azomethine of the neighboring complex connected to the initial one by translation along the x axis. These chains are linked through hydrogen bonds involving the oxygen atoms of the NO2 groups. The benzene rings of the azomethine ligands of the adjoining complexes from different chains are antiparallel to each other. The coordination polyhedron of the central atom is an elongated tetragonal bipyramid. Its equatorial plane is formed by the phenol O atom, one of the alcohol O atoms, the N atom of ligand L1, and the O atom of the amino alcohol in the neighboring complex. The apices are the O atom of the water molecule and the O atom of the amino alcohol in the neighboring azomethine molecule. In complexes I and II, the outer-sphere nitrato group mainly serves to unite trimers and polymers in the crystal by means of hydrogen bonds.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 621–629.Original Russian Text Copyright © 2005 by Chumakov, Tsapkov, Simonov, Antosyak, Bocelli, Perrin, Starikova, Samus, Gulea.  相似文献   

11.
Two novel Schiff base ligands (La and Lb) were prepared from the condensation of quinoline 2‐aldehyde with 2‐aminopyridine (ligand La) and from the condensation of oxamide with furfural (ligand Lb). Mixed ligand complexes of the type M+2La/b Lc were prepared, where (La and Lb) the primary ligands and Lc was 2,6‐pyridinedicarboxylic acid as secondary ligand. Metal ions used were Fe(II), Co(II), Ni(II) and Zn(II) for mixed ligands La Lc and Fe(II), Co(II), Ni(II), Cu(II), Hg(II) and Zn(II) for LbLc mixed ligands. La and Lb Schiff base ligands were both characterized using elemental analyses, molar conductance, IR, 1H and 13C NMR. Mass spectra for Lb, [Zn(La)LcCl]Cl and [Cu(Lb)LcCl]Cl were also studied. ESR spectrum of the [Cu(Lb) LcCl]Cl complex was also recorded The metal complexes were synthesized and characterized using elemental analyses, spectroscopic (IR, 1H NMR, UV‐visible, diffused reflectance), molar conductance, magnetic moment and thermal studies. The IR and 1H NMR spectral data revealed that 2,6‐pyridinedicarboxalic acid ligand coordinated to the metal ions via pyridyl N and carboxylate O without proton displacement. In addition, the IR data showed that La and Lb ligands behaved as neutral bidentate ligands with N2 donation sites (quinoline N and azomethine N for La and two azomethine N for Lb). Based on spectroscopic studies, an octahedral geometry was proposed for the complexes. The thermal stability and degradation of the metal complexes were investigated by thermogravimetric analysis. The binding modes and affinities of La, Lb and Zn(II) complexes towards receptors of crystal structure of E. coli (PDB ID: 3 t88) and mutant oxidoreductase of breast cancer (PDB ID: 3 hb5) receptors were also studied. The antimicrobial activity against two species of Gram positive, Gram negative bacteria and fungi were tested for the Schiff base ligands, 2,6‐pyridinedicarboxylic acid and the mixed ligand complexes and revealed that the synthesized mixed ligand complexes exhibited higher antimicrobial activity than their free Schiff base ligands.  相似文献   

12.
Abstract

Two new cadmium(II) complexes with phenylthiourea (PTU), namely Cd(PTU)4Cl2 (1) and [Cd2(NCS)22-SCN)2(PTU)22-PTU)2] n (2), have been prepared and characterized structurally by X-ray diffaction. Complex 1 crystallizes in the monoclinic space group C2/c, with a = 27.057(13), b = 8.108(3), c = 16.751(8) Å, β = 114.46°, V = 3345(3) Å3, Z = 4. Complex 2 crystallizes in the triclinic space group P-1, with a = 9.336(3), b = 14.686(5), c = 16.911(5) Å, α = 71.36(2), β = 84.31(2), γ = 72.470(10)°, V = 2095.0(12) Å3 Z = 4. The structural analysis shows that each metal atom in both the mononuclear complex 1 and polynuclear complex 2 is octahedrally coordinated by four sulfur atoms and two chloro ligands or two nitrogen atoms from the thiocyanate groups, respectively. The PTU ligand can serve as either a monodentate ligand or a μ2-bridging ligand upon coordination to a metal atom.  相似文献   

13.
Four water soluble azo dyes, 4-(isopropyl)-2-[(E)-(4-chlorophenyl)diazenyl]phenol (L 1), 4-(isopropyl)-2-[(E)-(2,4-dichlorophenyl)diazenyl]phenol (L2), 4-(sec-butyl)-2-[(E)-(4-chlorophenyl) diazenyl]phenol (L 3), 4-(sec-butyl)-2-[(E)-(2,4-dichlorophenyl)diazenyl]phenol (L 4), and their Cu(II) and Ni(II) complexes were synthesized and characterized using spectroscopic methods. Examination of their thermal stability revealed similar decomposition temperature of approximately 260–300°C and that they were more thermally stable than their metal complexes. Ni(II) complexes of ligands L2 and L4 were more stable than the other coordination compounds. Among the synthesized ligands, L2 and the complexes Cu(L3)2 and Ni(L4)2 showed both antimicrobial and antifungal activity. However, the other ligands and the complexes were poorly active against selected microorganisms.  相似文献   

14.
Methyl 3-[(3,5-dimethylpyrazole-1-carbothioyl)-amino]propionate (L1) and the optically active derivative of natural monoterpene (+)-3-carene, (3bS,4aR)-3-[(3,4,4-trimethyl-3b,4,4a,5-tetrahydro-cyclopropa[3,4]cyclopenta[1,2-c]pyrazole-1-carbothioyl)-amino]propionate (L2), are synthesized. The paramagnetic CuL1Cl2 (I) and [Cu2L2 2Cl4] (II) complexes are obtained. According to the X-ray diffraction data, in mononuclear complex I, the L1 molecule performs a bidentate-cyclic function due to the coordination of the S atom of the C=S group and the N atom of the pyrazole cycle. The CuCl2NS coordination polyhedron is a distorted tetrahedron. Two molecules of complex I form an associate due to weak Cu···S interactions. Compound II is binuclear due to the bridging function of two Cl- ions, and analogous functions of the L1 and L2 ligands. The coordination polyhedron in complex II is CuCl3NS. The eff values for compounds I and II are equal to 1.81 and 1.79 B, respectively, and are constant in the interval from 78 to 300 K, indicating that noticeable exchange interactions between unpaired electrons of the Cu2+ ions are absent. The EPR spectra of the complexes in the solid phase are examined.  相似文献   

15.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

16.
Reactions of hydrated zinc(II) trifluoroacetate and sodium azide with two tridentate Schiff bases HL1 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-chlorophenol) and HL2 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-bromophenol) under the same reaction conditions yielded two dinuclear isostructural zinc(II) complexes, [Zn(L1)(N3)]2 (1) and [Zn(L2)(N3)]2 (2), respectively. The complexes were characterized systematically by elemental analysis, UV–Vis, FT-IR, and 1H NMR spectroscopic methods. Single-crystal X-ray diffraction studies reveal that each of the dinuclear complexes consists of two crystallographically independent zinc(II) ions connected by double bridging phenoxides. All zinc(II) ions in 1 and 2 are surrounded by similar donor sets and display distorted square–pyramidal coordination geometries. The ligands and complexes reveal intraligand 1(π → π*) flourescence. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates their potential to serve as photoactive materials.  相似文献   

17.
研究了(氮甲基咪唑-2-基)双(3,5-二甲基吡唑)甲烷(L1),2-吡啶基双(3,5-二甲基吡唑)甲烷(L2)及4-吡啶基双(3,5-二甲基吡唑)甲烷(L3)与羰基钨的反应,合成了一系列以单齿,双齿及三齿氮配位的羰基金属衍生物LW(CO)5 (L=L1或L3),LW(CO)4 (L=L1,L2或L3)和LW(CO)3 (L=L1或L2).核磁,红外及X-射线单晶衍射分析表明这3种配体表现出了可变的配位方式.在LW(CO)5中,当配体为L1时,其倾向于通过咪唑氮与金属配位,而为L3则倾向于利用吡啶氮与金属作用;在LW(CO)4中,配体L1表现为通过咪唑氮和吡唑氮原子配位的[N,N']双齿配体,而L2和L3表现为通过吡唑氮原子配位的[N,N]双齿配体;在LW(CO)3中,L1和L2起着[N,N,N']三齿螯合配体的作用.  相似文献   

18.
The synthesis and characterisation of two cobalt(II) complexes, [CoIILBr-acrCl2] (1a) and [CoIILH-acrCl2] (1b), with acridine head-units resulting from an unexpected ligand rearrangement from a diphenylamine head-unit, and the intended cobalt(II) complex, CoIILBr-dpa(Cl)(H2O) (2), are reported. Single crystals of the two dark green acridine-based cobalt(II) complexes, 1a and 1b, form in a one-pot reaction of cobalt(II) chloride, the chosen diphenylamine-2,2′-dicarboxaldehyde (Ia 4,4-′dibromo- or Ib unsubstituted), triethylamine and two equivalents of 2,4-dimethylaniline in acetonitrile, in 23% yield. In contrast, the intended diphenylamine-based complex was isolated in two steps: first isolation of the Schiff base ligand, then complexation with cobalt(II) chloride and deprotonation with potassium tert-butoxide, in methanol/dichloromethane, giving 2 as a bright yellow solid in 67% yield. All three complexes feature cobalt(II) centres, with N2Cl2 approximately tetrahedral coordination for 1a and 1b confirmed by single crystal structure determinations. It is proposed that after one imine ‘arm’ forms, cobalt(II) coordination facilitates the other aldehyde undergoing an intramolecular cyclisation to form the new heterocyclic acridine head-unit. The structures of both of the resulting acridine-based complexes, 1a and 1b, and that of the originally intended Schiff base ligand, HLBr-dpa, were confirmed by single-crystal X-ray diffraction. These are the first examples of complexes of an acridine ligand of this type.  相似文献   

19.
Four mononuclear copper(II) complexes of two new carboxamide derivatives formulated as [Cu(L1)2](ClO4)2 (1a), [Cu(L1)2](NO3)2 (1b), [Cu(L2)2(H2O)2](ClO4)2 (2a), and [Cu(L2)2(H2O)](NO3)2 (2b) have been isolated in pure form from the reaction of L1 and L2 [where L1 = N-(furan-2-ylmethyl)-2-pyridinecarboxamide and L2 = N-(thiophen-2-ylmethyl)-2-pyridinecarboxamide] with copper(II) salts of perchlorate and nitrate. All the complexes were characterized by physicochemical and spectroscopic tools along with single-crystal X-ray diffraction studies. The structural analyses showed that 1 is monomeric of square planar geometry with copper(II) chelated by two L1 ligands. Complex 2 differs in coordination geometry, being octahedral and distorted square pyramidal. Two L2 ligands occupy the equatorial positions of the octahedral 2a and the basal sites of the pyramidal 2b, with water molecules that complete the coordination sphere in each case. Electrochemical studies using cyclic voltammetry showed a reversible redox behavior of the copper(II) in 1 and 2. The electronic spectroscopic behavior and the trend of one electron equivalent redox potential corresponding to a CuII/CuI couple have also been confirmed by density functional theory calculations. The spectroscopic and viscosity measurement study in tris–HCl buffer suggested an intercalative interaction of 1a and 2 with calf thymus DNA likely due to the stacking between the non-coordinated furan and thiophene chromophore with the base pairs of DNA.  相似文献   

20.
研究了(氮甲基咪唑-2-基)双(3,5-二甲基吡唑)甲烷(L1),2-吡啶基双(3,5-二甲基吡唑)甲烷(L2)及4-吡啶基双(3,5-二甲基吡唑)甲烷(L3)与羰基钨的反应,合成了一系列以单齿,双齿及三齿氮配位的羰基金属衍生物LW(CO)5(L=L1或L3),LW(CO)4(L=L1,L2或L3)和LW(CO)3(L=L1或L2)。核磁,红外及X-射线单晶衍射分析表明这3种配体表现出了可变的配位方式。在LW(CO)5中,当配体为L1时,其倾向于通过咪唑氮与金属配位,而为L3则倾向于利用吡啶氮与金属作用;在LW(CO)4中,配体L1表现为通过咪唑氮和吡唑氮原子配位的[N,N′]双齿配体,而L2和L3表现为通过吡唑氮原子配位的[N,N]双齿配体;在LW(CO)3中,L1和L2起着[N,N,N′]三齿螯合配体的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号