首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light switching characteristics induced by a thermal smectic A (SmA) ? chiral nematic (N*) phase transition were studied for homeotropically aligned [smectic A liquid crystal (SmA-LC)/nematic liquid crystal (N-LC)/chiral dopant] and [side chain type smectic A liquid crystalline polymer (SmA-LCP)/N-LC/chiral dopant] composites. A drastic change from a transparent SmA phase to a light-scattering N* phase occurred in both composites upon heating. In the case of the heat-induced N* phase for the (SmA-LC/N-LC/chiral dopant) composite, the N* phase exhibited weak light scattering due to formation of a scroll texture. On the other hand, in the case of the heat-induced N* phase for the (SmA-LCP/N-LC/chiral dopant) composite, the N* phase showed strong light scattering due to formation of a focalconic texture. The existence of a SmA-LCP was responsible for a higher contrast ratio between the transparent SmA phase and the light scattering N* phase for the (SmA-LCP/ N-LC/chiral dopant) composite than for the (SA-LCN/N-LC/chiral dopant) composite.  相似文献   

2.
《Liquid crystals》1997,23(5):667-676
A transition between the transparent smectic A (SmA) phase and the light scattering chiral nematic (N*) phase was realized based on the thermally induced SmA N* phase transition for the homeotropically aligned \[liquid crystalline polymer (LCP)/liquid crystal (LC)/chiral dopant] ternary composite system. The LCP played an important role in increasing the intensity of the light scattering of the heat-induced N* phase. Meanwhile the effects of the composition of the ternary composite system on the thermo-optical characteristics were also investigated.  相似文献   

3.
A (photo-polymerizable liquid crystal (LC) monomer/LCs/chiral dopant/photoinitiator) mixture with a smectic A (SmA)-chiral nematic (N*) phase transition was sandwiched between two ITO glass substrates which were not subjected to any surface orientation treatment. When an electric field-induced homeotropically oriented SmA phase of the mixture was irradiated with UV light, an oriented liquid crystalline polymer (LCP) network was formed upon photo-polymerization of the LC monomer. Then, a (homeotropically oriented LCP network/LCs/chiral dopant) composite with a SmA-N* phase transition was prepared. A focal-conic texture appeared in the heat-induced N* phase of the composite upon heating from the transparent state of the homeotropically oriented SmA phase; the focal-conic texture exhibited strong light scattering. Upon cooling the composite to the SmA phase, this phase was again homeotropically oriented due to the strong intermolecular interaction between the LC molecules and the homeotropically oriented LCP network. Thus, the transparent state of the SmA phase and the light scattering state of the N* phase occurred reversibly upon cooling and heating, accompanied by the thermal SmA-N* phase transition.  相似文献   

4.
《Liquid crystals》2000,27(12):1695-1699
A (photo-polymerizable liquid crystal (LC) monomer/LCs/chiral dopant/photoinitiator) mixture with a smectic A (SmA)-chiral nematic (N*) phase transition was sandwiched between two ITO glass substrates which were not subjected to any surface orientation treatment. When an electric field-induced homeotropically oriented SmA phase of the mixture was irradiated with UV light, an oriented liquid crystalline polymer (LCP) network was formed upon photo-polymerization of the LC monomer. Then, a (homeotropically oriented LCP network/LCs/chiral dopant) composite with a SmA-N* phase transition was prepared. A focal-conic texture appeared in the heat-induced N* phase of the composite upon heating from the transparent state of the homeotropically oriented SmA phase; the focal-conic texture exhibited strong light scattering. Upon cooling the composite to the SmA phase, this phase was again homeotropically oriented due to the strong intermolecular interaction between the LC molecules and the homeotropically oriented LCP network. Thus, the transparent state of the SmA phase and the light scattering state of the N* phase occurred reversibly upon cooling and heating, accompanied by the thermal SmA-N* phase transition.  相似文献   

5.
A new type of polymer-liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E-Z isomerization under UV irradiation was used. A merocianine-type substance was selected as a dichroic dye. Introduction of a dye-doped cholesteric mixture with a helical pitch higher than ∼300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal-polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

6.
The properties of synthesized side-chain liquid crystalline polymer (SCLCP)/liquid crystal (LC)/chiral dopant composites having a chiral nematic (N*) phase at room temperature were investigated by polarized optical microscopy (POM) and a UV/VIS/NIR spectrophotometer. The composite exhibited a planar texture after it was filled into cells under homogeneous boundary conditions and it was transparent. When an electric field was applied to the composite, a focal conic texture was formed and the composite became light scattering. After the electric field was turned off, the light-scattering state remained stable for some time, i.e. the light-scattering state exhibited a memory effect. The focal conic texture changed into the planar texture when the composite was heated and the composite became transparent again. Therefore, the composite had electrically induced and thermally erased properties. The SCLCP had some influence on the memory effect and on the thermo-electro-optical properties of the composite.  相似文献   

7.
A new type of polymer–liquid crystal composite with photovariable dichroism and birefringence is described. Porous stretched polyethylene films were used as polymer matrices. To induce a cholesteric phase in a commercial nematic host, a chiral photochromic dopant based on sorbide and cinnamic acid capable of E–Z isomerization under UV irradiation was used. A merocianine‐type substance was selected as a dichroic dye. Introduction of a dye‐doped cholesteric mixture with a helical pitch higher than ~300 nm to polymer film led to an almost complete transition from a cholesteric to an oriented nematic phase, as well as to an increase in birefringence and the appearance of dichroism. Decrease of the helical pitch by increasing in the chiral dopant concentration in the liquid crystal–polymer composite results in a reduction of the dichroism values. UV irradiation of polymer composite leading to an isomerization of the chiral dopant and helix untwisting induces a noticeable gradual growth of dichroism and birefringence. These new composites can be considered as promising materials for optical applications.  相似文献   

8.
The properties of synthesized side‐chain liquid crystalline polymer (SCLCP)/liquid crystal (LC)/chiral dopant composites having a chiral nematic (N*) phase at room temperature were investigated by polarized optical microscopy (POM) and a UV/VIS/NIR spectrophotometer. The composite exhibited a planar texture after it was filled into cells under homogeneous boundary conditions and it was transparent. When an electric field was applied to the composite, a focal conic texture was formed and the composite became light scattering. After the electric field was turned off, the light‐scattering state remained stable for some time, i.e. the light‐scattering state exhibited a memory effect. The focal conic texture changed into the planar texture when the composite was heated and the composite became transparent again. Therefore, the composite had electrically induced and thermally erased properties. The SCLCP had some influence on the memory effect and on the thermo‐electro‐optical properties of the composite.  相似文献   

9.
By mixing the achiral liquid crystal HOAB, exhibiting a nematic (N)-smectic-C (SmC) mesophase sequence, with the chiral antiferroelectric liquid crystal (AFLC) (S,S)-M7BBM7, forming the antiferroelectric SmC(a)(*) phase, at least seven different mesophases have been induced which neither component forms on its own: a twist-grain-boundary (TGB(*)) phase, two or three blue phases, the untilted SmA(*) phase, as well as all three chiral smectic-C-type "subphases," SmC(alpha)(*), SmC(beta)(*), and SmC(gamma)(*). The nature of the induced phases and the transitions between them were determined by means of optical and electro-optical investigations, dielectric spectroscopy, and differential scanning calorimetry. The induced phases can to a large extent be understood as a result of frustration, TGB(*) at the border between nematic and smectic, the subphases between syn and anticlinic tilted smectic organization. X ray scattering experiments reveal that the smectic layer spacing as well as the degree of smectic order is relatively constant in the whole mixture composition range in which AFLC behavior prevails, whereas both these parameters rapidly decrease as the amount of HOAB is increased to such an extent that no other smectic-C-type phase than SmC/SmC(*) exists. By tailoring the composition we are able to produce liquid crystal mixtures exhibiting unusual phase sequences, e.g., with a direct isotropic-SmC(a)(*) transition or a temperature range of the SmC(beta)(*) subphase of about 50 K.  相似文献   

10.
The phase of a liquid crystal (LC) changing from a nematic phase to a cholesteric (Ch) mesophase is achieved by adding different ratios of chiral dopants S811. By studying the transmission spectrum, we are able to measure the helical pitch in cholesteric phase. The pitch in the mixtures of nematic E7 and chiral dopants S811 as a function of the concentration of the dopant and temperature is investigated. The sensitivity of the selective reflection notch of the cholesteric phase to the thermal tuning depends strongly on the ratios of the chiral dopants. It reveals that the influence of temperature is more profound for those cholesteric liquid crystals (CLCs) which exhibit smectic A (SmA) at lower temperatures. When fitted using Keating's formula, the helical pitch calculated from our experimental results lies on the predicted curve. Optimised ratios of the mixture CLCs for the optimised reflection band with the specified wavelength ranging from 467 nm to 2123 nm are suggested.  相似文献   

11.
The phase behaviour and aggregation states of a binary mixture of a nematic liquid crystal and a chiral dopant have been investigated. The nematic liquid crystal E7 was miscible with the chiral dopant S811 over their entire concentration range. Binary E7/S811 mixtures formed the N* phase for S811 contents under 20%, and the SmA* phase for S811 contents between 40% and 90%. BP and TGBA* frustrated phases were found during cooling, for S811 contents between 25% and 35%. The helical pitches of the binary mixtures decreased with increasing chiral dopant content. From XRD profiles, the orientational ordering of the binary composites was found to increase with increasing chiral dopant content.  相似文献   

12.
Three series of chiral liquid crystalline dimers were investigated, having a cholesteryl and a cyanobiphenylyl, butoxybiphenylyl or hexyloxybiphenylyl group connected to a variable alkyl spacer through ether linkages. Their properties were compared with those of the corresponding ester derivatives. The phase behaviour of compounds with ether and ester linkages is comparable, showing N* and SmA phases. The melting points of the compounds with ether linkages are in the same range as those of the ester compounds, but the liquid crystal transition temperatures are lower. The smectic layer spacings and smectic ordering properties are also similar. The cyanobiphenylyl compounds have an interdigitated SmA layer structure, which shows a small odd-even effect with spacer parity. The alkoxybiphenylyl compounds have a monolayer SmA phase for short spacers and an intercalated SmA phase for longer spacers. The selective reflection wavelengths of the chiral nematic phase of the ether compounds are lower than those of the corresponding ester compounds. The transition from N* to interdigitated or monolayer SmA is accompanied by a strong increase in the selective reflection wavelength, indicative of an intermediate TGB phase. This is absent for the transition from N* to intercalated SmA.  相似文献   

13.
Three series of chiral liquid crystalline dimers were investigated, having a cholesteryl and a cyanobiphenylyl, butoxybiphenylyl or hexyloxybiphenylyl group connected to a variable alkyl spacer through ether linkages. Their properties were compared with those of the corresponding ester derivatives. The phase behaviour of compounds with ether and ester linkages is comparable, showing N* and SmA phases. The melting points of the compounds with ether linkages are in the same range as those of the ester compounds, but the liquid crystal transition temperatures are lower. The smectic layer spacings and smectic ordering properties are also similar. The cyanobiphenylyl compounds have an interdigitated SmA layer structure, which shows a small odd–even effect with spacer parity. The alkoxybiphenylyl compounds have a monolayer SmA phase for short spacers and an intercalated SmA phase for longer spacers. The selective reflection wavelengths of the chiral nematic phase of the ether compounds are lower than those of the corresponding ester compounds. The transition from N* to interdigitated or monolayer SmA is accompanied by a strong increase in the selective reflection wavelength, indicative of an intermediate TGB phase. This is absent for the transition from N* to intercalated SmA.  相似文献   

14.
MesomorphicCharacteristicsofInducedChiralNematicPhaseof[SmecticLCP,PS(4BC/DM)/NematicLC,E7/ChiralDopant,CB┐15]┐TernaryComposi...  相似文献   

15.
This paper describes the alignment of ferroelectric liquid crystal (FLC) structures formed between aligned polymer fibres, where the FLC smectic layers are determined by polarising microscopy and X-ray diffraction. The FLC/polymer composite films were formed from a nematic phase FLC/monomer solution using a photopolymerisation-induced phase separation method. It was found that bending of the FLC smectic layers was induced in both the film plane and the cross-sectional plane at the phase transition from smectic A to chiral smectic C of the FLC material. The light transmittance properties of the composite film between crossed polarizers was analysed by light propagation simulation in several optical anisotropic media, based on the evaluated smectic layer model.  相似文献   

16.
This paper describes the alignment of ferroelectric liquid crystal (FLC) structures formed between aligned polymer fibres, where the FLC smectic layers are determined by polarising microscopy and X-ray diffraction. The FLC/polymer composite films were formed from a nematic phase FLC/monomer solution using a photopolymerisation-induced phase separation method. It was found that bending of the FLC smectic layers was induced in both the film plane and the cross-sectional plane at the phase transition from smectic A to chiral smectic C of the FLC material. The light transmittance properties of the composite film between crossed polarizers was analysed by light propagation simulation in several optical anisotropic media, based on the evaluated smectic layer model.  相似文献   

17.
A side‐chain polysiloxane cholesteric liquid crystalline elastomer (ChLCE) with binaphthalene derivate as crosslinkings and cholesterol derivate as liquid crystalline monomers was designed and synthesized. A binaphthyl chiral dopant (CD) was synthesized as well. The chemical structures and liquid crystalline properties of the ChLCE and the CD were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, element analyses, differential scanning calorimetry and polarizing optical microscopy measurements. The helical twisting power of the ChLCE exhibited a turning point with changing temperature and was smaller than that of the CD. In addition, the effect of the ChLCE on phase transition temperatures and thermal‐optical properties of a liquid crystal that show smectic A (SmA)‐cholesteric (Ch) phase transition was studied. Worthily, the testing of the reflection wavelength with changing temperature suggested that the adding of the ChLCE in liquid crystals that show SmA‐Ch phase transition can expedite their SmA‐Ch transition. In addition, the network structure of the ChLCE may play a significant role in the accelerating of the transition. These properties provided theoretical and experimental foundations for applying ChLCE in thermally sensitive liquid crystal devices requiring fast response, such as thermally controllable windows, materials and displays. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this study,right-handed dicinnamate isosorbide was synthesized via the esterification reaction between optically active isosorbide and cinnamate.The chiral dopant was characterized by FT-IR,~1H NMR,elemental analysis,SEM,UV absorption spectrum.After dissolving in a nematic liquid crystal mixture,the chiral dopant exhibited a temperature-dependent solubility in the chiral nematic liquid crystal mixture.Meanwhile,a relatively high value of helical twisting power of the polymerizable chiral dopant was de...  相似文献   

19.
《Liquid crystals》1999,26(6):925-930
The phase behaviours of mixed liquid crystal systems having either Sm/N or Sm/Ch properties have been studied. The (smectic/nematic) binary system formed smectic phases over a wide and much enhanced range of temperature (42 C) and a broad concentration range (0-90 wt %). The ternary smectic/cholesteric system, in appropriate concentration ranges, exhibited the smectic A phase, a TGBA-like twist grain boundary A phase, the cholesteric phase and blue phases. The TGBA-like phase appeared in the cholesteric-smectic phase transition range. Three textures (chiral pitch, fan-shaped and scale-like) for the cholesteric phase of the ternary smectic/cholesteric mixtures were observed in the ranges 0-7, 7-43 and 43 wt % respectively, of cholesteric CB15, in a binary Sm/N mixture.  相似文献   

20.
《Liquid crystals》2000,27(2):225-231
Dielectric studies of the first order phase transition of a ferroelectric liquid crystal material having the phase sequence chiral nematic to smectic C* have been performed using thin (2.5 mum) cells in the frequency range 0.01 Hz to 12 MHz. For planar alignment, one of the cell electrodes was covered with a polymer and rubbed. Optically well defined alignment was obtained by applying an a.c. field below the N*-SmC* transition. Charge accumulation was enhanced by depositing a thick polymer aligning layer for the alignment of the liquid crystal molecules. A sub-hertz frequency dielectric relaxation process is detected in smectic C*, in the chiral nematic and a few degrees into the isotropic phase, due to the charge accumulation between the polymer layer and the ferroelectric liquid crystal material. The effect of temperature and bias field dependences on the sub-hertz dielectric relaxation process are reported and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号