首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成了一例以取代苯甲酸衍生物为辅助配体的叠氮铜化合物[Cu(4-Fb)(N3)(H2O)] n1)(4-Fb=4-formylbenzoate),并对其结构和磁性进行了表征。单晶结构研究表明,化合物1中的最小不对称单元包含一个晶体学独立的Cu(Ⅱ)离子,中心离子呈现了扭曲的四棱锥几何构型。相邻的Cu(Ⅱ)离子之间通过交替的μ-1,1-(EO)-叠氮和syn,syn-羧酸双重桥连接成一维线性金属链。磁性研究揭示,双重桥的超交换反补偿效应导致目标化合物中链内相邻的Cu(Ⅱ)离子之间表现出强的铁磁耦合作用(J=72.1 cm-1)。但是并没有观察到铁磁有序和慢磁弛豫现象。作为影响磁性能的重要结构参数,化合物中Cu-N-Cu的角度(113.34°)与已报道的含双重桥的叠氮铜体系相符。对化合物的磁构关系进行了讨论和探究。此外,密度泛函理论(DFT)计算结果为化合物中相邻Cu(Ⅱ)离子间的铁磁耦合作用提供了定性的理论解释。  相似文献   

2.
合成了一例以取代苯甲酸衍生物为辅助配体的叠氮铜化合物[Cu(4-Fb)(N3)(H2O)]n1)(4-Fb=4-formylbenzoate),并对其结构和磁性进行了表征。单晶结构研究表明,化合物1中的最小不对称单元包含一个晶体学独立的Cu(Ⅱ)离子,中心离子呈现了扭曲的四棱锥几何构型。相邻的Cu(Ⅱ)离子之间通过交替的μ-1,1-(EO)-叠氮和syn,syn-羧酸双重桥连接成一维线性金属链。磁性研究揭示,双重桥的超交换反补偿效应导致目标化合物中链内相邻的Cu(Ⅱ)离子之间表现出强的铁磁耦合作用(J=72.1 cm-1)。但是并没有观察到铁磁有序和慢磁弛豫现象。作为影响磁性能的重要结构参数,化合物中Cu-N-Cu的角度(113.34°)与已报道的含双重桥的叠氮铜体系相符。对化合物的磁构关系进行了讨论和探究。此外,密度泛函理论(DFT)计算结果为化合物中相邻Cu(Ⅱ)离子间的铁磁耦合作用提供了定性的理论解释。  相似文献   

3.
合成了一种叠氮锰一维链状化合物([MnⅡ(N3)2(pybox)]n,1),该化合物采用2,6-吡啶双噁唑啉(pybox)三齿配体和叠氮作为共配体。用单晶X射线衍射的方法对其晶体结构进行了表征,结果表明二价锰离子通过双EO叠氮桥和双EE桥交替桥连成链状结构,其中锰离子分别与4个叠氮根和1个pybox配体上的3个氮原子配位,为七配位模式。变温磁化率数据表明,交替的EO叠氮桥和EE叠氮桥分别传递铁磁和反铁磁耦合相互作用形成一维交替的海森堡链。通过S=5/2交替铁磁-反铁磁耦合一维体系的理论模型,我们获得其磁耦合常数为:J1=9.19 cm-1,J2=-19.89 cm-1。化合物1在低温表现出反铁磁有序。  相似文献   

4.
基于一系列二氰根铬与[Cu(cyclam)](Cl O4)2反应合成了3个氰根桥联CrⅢ-CuⅡ-CrⅢ三核配合物[Cu(cyclam)][Cr(bpmb)(CN)2]2·4H2O(1)(cyclam=1,4,8,11-四氮杂环十四烷,bpmb2-=1,2-二(2-吡啶甲酰胺基)-4-甲基苯),[Cu(cyclam)][Cr(bpdmb)(CN)2]2(2)(bpdmb2-=1,2-二(2-吡啶甲酰胺基)-4,5-二甲基苯)和[Cu(cyclam)][Cr(bp Clb)(CN)2]2·4H2O(3)(bp Clb2-=1,2-二(2-吡啶甲酰胺基)-4-氯苯)。单晶衍射结果表明:3个化合物是结构类似的中性三核配合物,均含有氰根桥联的Cr(Ⅲ)-CN-Cu(Ⅱ)-NC-Cr(Ⅲ)连接;磁性研究表明:氰根桥在CrⅢ和CuⅡ离子间传递弱的铁磁耦合作用,基于自旋哈密顿算符H=-2JCr CuSCu(SCr1+SCr2)拟合得到它们的磁耦合常数分别是JCr Cu=1.53(2)cm-1(1),0.45(1)cm-1(2)和0.73(2)cm-1(3)。  相似文献   

5.
基于一系列二氰根铬与[Cu(cyclam)](Cl O4)2反应合成了3个氰根桥联CrⅢ-CuⅡ-CrⅢ三核配合物[Cu(cyclam)][Cr(bpmb)(CN)2]2·4H2O(1)(cyclam=1,4,8,11-四氮杂环十四烷,bpmb2-=1,2-二(2-吡啶甲酰胺基)-4-甲基苯),[Cu(cyclam)][Cr(bpdmb)(CN)2]2(2)(bpdmb2-=1,2-二(2-吡啶甲酰胺基)-4,5-二甲基苯)和[Cu(cyclam)][Cr(bp Clb)(CN)2]2·4H2O(3)(bp Clb2-=1,2-二(2-吡啶甲酰胺基)-4-氯苯)。单晶衍射结果表明:3个化合物是结构类似的中性三核配合物,均含有氰根桥联的Cr(Ⅲ)-CN-Cu(Ⅱ)-NC-Cr(Ⅲ)连接;磁性研究表明:氰根桥在CrⅢ和CuⅡ离子间传递弱的铁磁耦合作用,基于自旋哈密顿算符H=-2JCr CuSCu(SCr1+SCr2)拟合得到它们的磁耦合常数分别是JCr Cu=1.53(2)cm-1(1),0.45(1)cm-1(2)和0.73(2)cm-1(3)。  相似文献   

6.
基于六氰根构筑单元[M(Ⅱ)(CN)_6]~(4-)与[Mn(Ⅲ)(salen)]+模块反应合成了2个新型酚氧和氰根混合桥联的MⅡ-Mn(Ⅲ)配合物{[Mn(Ⅲ)(salen)]_4[Mn(Ⅲ)(salen)(H_2O)]_2[MⅡ(CN)_6]}(Cl O_4)2·2H_2O(M=Ru(1),Os(2),salen2-=双水杨酰胺乙基负离子)。单晶衍射结果表明:它们是结构类似的二维化合物,其中氰根桥联的七核[Mn(Ⅲ)6MⅡ]2+单元进一步通过双酚氧桥相互连接构成二维层状结构。磁性研究表明:2个化合物通过酚氧桥均呈现反常的反铁磁耦合,基于自旋哈密顿算符H=-2JMnMnSMn1SMn2拟合得到它们的磁耦合常数分别是J=-0.340 cm~(-1)(1)和-0.561 cm~(-1)(2)。  相似文献   

7.
合成并通过元素分析、红外光谱、电子光谱等方法表征了叠氮桥联的双核配合物[Ni2(bispicen)2(μ-N3)2](ClO4)2[bispicen=N,N'-二(2-吡啶甲基)乙二胺].用单晶X射线衍射技术测定了配合物的晶体结构,晶体属正交晶系,P212121空间群,镍(Ⅱ)离子处于变形八面体配位环境,并采取cis-α构型,两个以μ-1,3桥联方式配位的叠氮离子之间呈罕见的交错式非平面排列。变温磁化率测定表明配合物两个镍(Ⅱ)离子之间存在反铁磁相互作用,基于H^=-2JS1^S2^的磁性分析表明磁交换积分J=-28.1cm^-1。  相似文献   

8.
合成并通过元素分析、红外光谱、电子光谱等方法表征了叠氮桥联的双核配合物[Ni2(bispicen)2(μ-N3)2](ClO4)2[bispicen=N,N'-二(2-吡啶甲基)乙二胺].用单晶X射线衍射技术测定了配合物的晶体结构,晶体属正交晶系,P212121空间群,镍(Ⅱ)离子处于变形八面体配位环境,并采取cis-α构型,两个以μ-1,3桥联方式配位的叠氮离子之间呈罕见的交错式非平面排列。变温磁化率测定表明配合物两个镍(Ⅱ)离子之间存在反铁磁相互作用,基于H^=-2JS1^S2^的磁性分析表明磁交换积分J=-28.1cm^-1。  相似文献   

9.
基于构筑单元K[Cr(bpb)(CN)2]和[Cu(cyclam)](Cl O4)合成了一个氰根桥联的CrⅢ-CuⅡ一维化合物{[Cu(cyclam)][Cr(bpb)(CN)2]2·2H2O}n[cyclam=1,4,8,11-四氮杂环十四烷;bpb2-=1,2-二(2-吡啶甲酰胺基)苯](1),并通过X-衍射单晶分析表征其结构特征。结果表明:化合物1是由氰根桥联的2种不同金属组成的聚合物,其结构属于三斜晶系,P1空间群,a=0.9667 3(19)nm,b=1.345 1(3)nm,c=1.382 0(3)nm,α=77.12(3)°,β=76.93(3)°,γ=82.02(3)°,V=1.699 1(6)nm3,Z=2,Dc=1.567 g·cm-3,μ=1.086 mm-1,F(000)=828,R1=0.0413,w R2=0.1200。磁性研究表明:配合物1中的CrⅢ离子和CuⅡ离子之间存在弱的铁磁耦合作用。  相似文献   

10.
基于构筑单元K[Cr(bpb)(CN)2]和[Cu(cyclam)](Cl O4)合成了一个氰根桥联的CrⅢ-CuⅡ一维化合物{[Cu(cyclam)][Cr(bpb)(CN)2]2·2H2O}n[cyclam=1,4,8,11-四氮杂环十四烷;bpb2-=1,2-二(2-吡啶甲酰胺基)苯](1),并通过X-衍射单晶分析表征其结构特征。结果表明:化合物1是由氰根桥联的2种不同金属组成的聚合物,其结构属于三斜晶系,P1空间群,a=0.9667 3(19)nm,b=1.345 1(3)nm,c=1.382 0(3)nm,α=77.12(3)°,β=76.93(3)°,γ=82.02(3)°,V=1.699 1(6)nm3,Z=2,Dc=1.567 g·cm-3,μ=1.086 mm-1,F(000)=828,R1=0.0413,w R2=0.1200。磁性研究表明:配合物1中的CrⅢ离子和CuⅡ离子之间存在弱的铁磁耦合作用。  相似文献   

11.
通过水热法合成了3个新型配位聚合物:[Cu(Hdppa)(H_2O)]_n(1)、{[Cu_2(dppa)(μ_2-OH)(H_2O)]·H_2O}_n(2)和{[Mn_3(dppa)_2(H_2O)_4]·2H_2O}_n(3),(H3dppa=3-(2,5-二羧基苯基)-吡啶羧酸),并对其进行了元素分析、红外光谱、粉末X射线衍射和热重分析表征。X射线单晶衍射分析结果表明:化合物1属于单斜晶系,P21/c空间群,a=1.371(2)nm,b=0.805(11)nm,c=1.266(19)nm,β=112.74(3)°,Z=4;化合物2属于三斜晶系,P1空间群,a=0.839(4)nm,b=1.039(5)nm,c=1.110(5)nm,α=98.31°,β=110.630(3)°,γ=111.90(3)°,Z=2;化合物3属于三斜晶系,P1空间群,a=0.881(6)nm,b=0.939(6)nm,c=1.038(7)nm,α=100.29°,β=97.990(10)°,γ=111.13(7)°,Z=1。化合物1以配体Hdppa2-桥联Cu(Ⅱ)形成一维链状结构;化合物2和3以配体dppa3-分别桥联Cu(Ⅱ)和Mn(Ⅱ)形成二维层状结构,并进一步通过氢键形成三维超分子结构。变温磁化率研究表明在化合物1和化合物2中存在较强的铁磁耦合作用,其磁交换常数分别为4.44和8.94 cm-1;而化合物3中Mn(Ⅱ)离子之间存在反铁磁相互作用。  相似文献   

12.
以3-吡唑-5吡啶-1,2,4-三唑(H2L)和均苯四甲酸(H_4btec)为配体合成了2个新的同构配位聚合物[M(btec)_(0.5)(H_2L)]_n(M=Co(Ⅱ)(1),Cu(Ⅱ)(2)),通过X射线单晶衍射、元素分析、红外光谱等进行了结构表征。晶体结构分析表明配合物1和2是同构的,都属于正交晶系,空间群为Pbca。2个配位聚合物都是二维结构,通过N…H…O氢键形成三维超分子框架结构。此外对上述配合物进行了磁性研究,结果表明配合物1内通过羧基桥连的金属钴离子之间是弱的铁磁相互作用;配合物2中存在典型的順磁行为。  相似文献   

13.
合成并通过元素分析、红外光谱、电子光谱等方法表征了叠氮桥联的双核配合物[Ni2(bispicen)2(μ-N3)2]-(CIO4)2[bispicen=N,N'-二(2-吡啶甲基)乙二胺].用单晶X射线衍射技术测定了配合物的晶体结构,晶体属正交晶系,P212121空间群,镍(Ⅱ)离子处于变形八面体配位环境,并采取cis-α构型,两个以μ-1,3桥联方式配位的叠氮离子之间呈罕见的交错式非平面排列.变温磁化率测定表明配合物中两个镍(Ⅱ)离子之间存在反铁磁相互作用,基于^H=-2J^S1^S2的磁性分析表明磁交换积分J=-28.1 cm-1.  相似文献   

14.
罗树常 《分子科学学报》2020,(1):62-68,I0005
基于DFT-BS方法,选择不同的泛函方法和基组,研究anti,anti甲酸桥联双核铜配合物的磁学性质.结果表明,在B3P86/TZV水平计算得到顺磁中心Cu(Ⅱ)离子间磁耦合常数为-55.63 cm^-1,与实验值-55.60 cm^-1最接近,可准确描述甲酸桥联双核铜配合物的磁学性质.顺磁中心Cu(Ⅱ)与甲酸根桥联配体间有较强的轨道作用,其磁轨道主要来源于Cu(Ⅱ)离子的3dyz轨道、桥联配体甲酸根离子的离域π键,顺磁中心Cu(Ⅱ)离子为自旋离域机理.在不同桥联模式的甲酸桥联双核铜配合物中,随顺磁中心Cu(1)自旋密度增加,Cu(Ⅱ)离子间的反铁磁性贡献逐渐增加,其磁耦合常数J值逐渐减小.  相似文献   

15.
基于构筑单元K2[Fe(1-CH3im)(CN)5]和[Cu(cyclam)](ClO4)2,合成了一个氰根桥联FeⅢ-CuⅡ中性一维化合物{[Fe(1-CH3im)(CN)4(μ-CN)Cu(cyclam)]·H2O}n(1-CH3im=1-甲基咪唑;cyclam=1,4,8,11-四氮杂环十四烷)(1),并通过X-射线单晶分析表征其结构特征。结果表明:化合物(1)是由氰根桥联的杂金属组成的聚合物,其结构属于三斜晶系,P1空间群,a=0.832 56(17)nm,b=0.899 38(18)nm,c=0.998 3(2)nm,α=111.94(3)°,β=95.06(3)°,γ=116.90(3)°,V=0.587 7(2)nm3,Z=1,Dc=1.554 g·cm-3,μ=1.558 mm-1,F(000)=286,R1=0.051 9,wR2=0.135 3。磁性研究表明:配合物1中CuⅡ和低自旋的FeⅢ离子之间存在弱的铁磁耦合作用。  相似文献   

16.
合成了一种叠氮锰一维链状化合物([Mn(N32(pybox)]n,1),该化合物采用2,6-吡啶双噁唑啉(pybox)三齿配体和叠氮作为共配体。用单晶X射线衍射的方法对其晶体结构进行了表征,结果表明二价锰离子通过双EO叠氮桥和双EE桥交替桥连成链状结构,其中锰离子分别与4个叠氮根和1个pybox配体上的3个氮原子配位,为七配位模式。变温磁化率数据表明,交替的EO叠氮桥和EE叠氮桥分别传递铁磁和反铁磁耦合相互作用形成一维交替的海森堡链。通过S=5/2交替铁磁-反铁磁耦合一维体系的理论模型,我们获得其磁耦合常数为:J1=9.19cm-1,J2=-19.89cm-1。化合物1在低温表现出反铁磁有序。  相似文献   

17.
合成了铜(Ⅱ)的手性单核配合物[Cu(OPSer)(phen)(H2O)]·3H2O(1)(H2OPSer=L-O-磷酸丝氨酸;phen=1,10-邻菲啰啉)。通过元素分析、红外光谱、热重分析和磁性对配合物进行表征,并利用单晶X-射线衍射法测定其结构。铜(Ⅱ)具有变形四方锥的配位环境,分别与1个L-O-磷酸丝氨酸离子的1个氮原子和氧原子、1个1,10-邻菲啰啉分子的2个氮原子以及1个配位水分子的氧原子配位。配合物每个分子单元通过氢键连接成三维超分子结构,分子间存在π-π堆积作用。在1.8~300 K范围内磁性测定表明:配合物1中存在铁磁耦合相互作用,经理论拟合:g=2.07,zJ′=0.044。  相似文献   

18.
基于五氰构筑单元[Fe(CN)5L]2-[L=1-甲基咪唑(1-Meim), 咪唑(Him)]和铜大环配离子合成了3个氰根桥联Fe(Ⅲ)-Cu(Ⅱ)双金属配合物, 并研究了它们的晶体结构和磁性. 单晶结构分析表明, 3个化合物为一维链状的Fe-Cu配合物, 铜离子的配位构型为拉长八面体结构, 轴向由2个[Fe(CN)5L]2-上的氰根氮原子配位, 而每个[Fe(CN)5L]2-用2个氰根桥联2个铜离子, 得到1个交替一维链结构. 磁性研究表明, 其中2个配合物呈铁磁相互作用, 1个呈少见的反铁磁耦合.  相似文献   

19.
本文报道了一个新的有机双膦酸铜化合物Cu3{(C5NH11)C(OH)(PO3)2}2(H2O)4·4H2O(1)的合成及结构。该化合物呈梯子型双链结构,由Cu(1)O5四方锥体和Cu(2)O6八面体通过{PO3C}四面体以共顶点方式连接而成。相邻的双链以几乎相互垂直的方式堆积,通过氢键作用形成了具有孔道的三维超分子网络结构,晶格水分子填充其中。磁性研究表明在铜离子间存在反铁磁相互作用。  相似文献   

20.
利用基于密度泛函理论(DVF)的第一性原理的FP_LAPW方法,对以铜离子为磁性中心的化合物[Cu(μ-cbdca)(H2O)]n(cbdca=cyclobutanedicarboxylate)的电子结构及磁性质进行了计算.对该材料的铁磁性、反铁磁性和非磁性三种状态下的总能量进行了计算.计算结果表明,[Cu(μ-cbdca)(H2O)]n的铁磁态能量最低,该化合物为稳定的铁磁性物质,该结果与实验吻合较好.对原子磁矩的计算结果发现,铜原子对化合物磁性的贡献较大,双齿配体上的氧原子和碳原子的贡献相对较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号