首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   

2.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene-based derivatives through intermolecular hydrogen bonding between the carboxylic acid groups of PSI100 and the imidazole rings in the azobenzene-based derivatives. The presence of H-bonding was confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline polymers and exhibit nematic mesophases identified on the basis of the observation of Schlieren textures. The mesogenic behaviour of these complexes was studied by polarizing optical microscopy and X-ray diffraction. The thermal behaviour of the complexes was investigated by differential scanning calorimetry. On increasing the spacer length, the transition temperatures initially increase. A further increase in spacer length, however, leads to a decrease in the transition temperatures. The electron donor-acceptor interaction between unlike mesogenic units in supramolecular copolymeric complexes helps to stabilize the mesophase.  相似文献   

3.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene-based derivatives through intermolecular hydrogen bonding between the carboxylic acid groups of PSI100 and the imidazole rings in the azobenzene-based derivatives. The presence of H-bonding was confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline polymers and exhibit nematic mesophases identified on the basis of the observation of Schlieren textures. The mesogenic behaviour of these complexes was studied by polarizing optical microscopy and X-ray diffraction. The thermal behaviour of the complexes was investigated by differential scanning calorimetry. On increasing the spacer length, the transition temperatures initially increase. A further increase in spacer length, however, leads to a decrease in the transition temperatures. The electron donor-acceptor interaction between unlike mesogenic units in supramolecular copolymeric complexes helps to stabilize the mesophase.  相似文献   

4.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene derivatives through intermolecular hydrogen bonding (H-bonding) between the carboxylic acid groups in the PSI100 and the imidazole rings in the azobenzene derivatives. The existence of H-bonding has been confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline (LC) polymers and exhibit stable mesophases. The LC behaviour of these H-bonded polymeric complexes was investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. The complexes exhibit nematic LC phases identified on the basis of Schlieren optical textures. On increasing spacer length or the concentration of the H-bonded mesogenic unit in the complex, the clearing temperature and the temperature range of the LC phase of the polymeric complex increase. The terminal group plays a critical role in determining the LC properties of the polymeric complexes. A terminal methoxy group is more efficient than a nitro group in increasing the clearing temperature. The electron donor-acceptor interactions between the H-bonded mesogenic units containing methoxy and nitro terminal groups in supramolecular 'copolymeric' complexes lead to an increase in the clearing temperature and a wider temperature range for the LC phase.  相似文献   

5.
《Liquid crystals》2001,28(10):1527-1538
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene derivatives through intermolecular hydrogen bonding (H-bonding) between the carboxylic acid groups in the PSI100 and the imidazole rings in the azobenzene derivatives. The existence of H-bonding has been confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline (LC) polymers and exhibit stable mesophases. The LC behaviour of these H-bonded polymeric complexes was investigated by differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction. The complexes exhibit nematic LC phases identified on the basis of Schlieren optical textures. On increasing spacer length or the concentration of the H-bonded mesogenic unit in the complex, the clearing temperature and the temperature range of the LC phase of the polymeric complex increase. The terminal group plays a critical role in determining the LC properties of the polymeric complexes. A terminal methoxy group is more efficient than a nitro group in increasing the clearing temperature. The electron donor-acceptor interactions between the H-bonded mesogenic units containing methoxy and nitro terminal groups in supramolecular 'copolymeric' complexes lead to an increase in the clearing temperature and a wider temperature range for the LC phase.  相似文献   

6.
基于聚烯烃用成核剂的结构特征设计合成了两种极性基团和非极性基团交替排列的乙烯基单体,并利用自由基引发聚合,制备出相应的侧链型液晶聚合物.采用元素分析、红外光谱和核磁共振氢谱对所合成单体和聚合物的结构进行了确认.并采用热失重(TGA)和差示扫描量热仪(DSC)研究了聚合物的热稳定性和相转变温度.结果表明,所合成聚合物的起始热分解温度均在337℃以上,具有优异的热稳定性;液晶相变温度区间可达186 K,具有较宽的液晶态温度范围.热台偏光显微镜(HS-POM)研究结果表明,聚合物均呈现出纹影织构,证明所合成的聚合物均为热致向列型侧链液晶高分子.采用DSC和HS-POM研究了所合成的侧链液晶聚合物对高密度聚乙烯(HDPE)异相成核结晶行为的影响.结果表明,侧链型液晶聚合物在提高HDPE结晶温度、结晶度以及降低HDPE晶粒的尺寸及分布方面均有优异的效果,是一类HDPE有效的成核剂.  相似文献   

7.
Side‐chain liquid‐crystalline polymers (SCLCPs) as nucleating agents for high‐density polyethylene (HDPE) were investigated. For this purpose, the molecular architectures of four different vinyl monomers with liquid‐crystalline properties were designed and prepared with 1‐butanol, 1‐pentanol, 4‐hydroxybenzoic acid, hydroquinone, and acryloyl chloride as the starting materials through alkylation and acylation reactions. The corresponding polymers were synthesized by homopolymerization in 1,4‐dioxane with benzoyl peroxide as the initiator at 60 °C. Both the monomers and the synthesized polymers were characterized with elemental analysis, Fourier transform infrared, and 1H NMR measurements. Differential scanning calorimetry, thermogravimetric analysis, and hot stage polarized optical microscopy were employed to study the phase‐transition temperature, mesophase texture, and thermal stability of the liquid‐crystalline polymers. The results showed that all the polymers had thermotropic liquid‐crystalline features. Being used as nucleating agents, SCLCPs effectively increased both the crystallization temperature and rate and, at the same time, raised the crystallinity for HDPE. In comparison with common small‐molecule nucleating agents, such as 1,3:2,4‐dibenzylidenesorbitol, SCLCPs are more efficient and are indeed excellent nucleating agents for HDPE. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3067–3078, 2005  相似文献   

8.
Supramolecular liquid–crystalline polymeric complexes based on a backbone that contains vinyl pyridine units and azobenzene or biphenyl derivatives that posses alkyl chains terminated by carboxylic acid have been obtained by the formation of intermolecular hydrogen bonds between the carboxylic acid and the pyridyl moieties. The polymeric complexes behave as side-chain liquid–crystalline polymers and exhibit smectic phases. A new type of H-bonded host-guest liquid–crystalline system is also reported. The liquid–crystalline host copolymers contain both mesogenic acrylate and 4-vinylpyridine units. The guest molecule is an azobenzene that has a carboxylic acid moiety at one of its extremities. The H-bonded polymeric host–guest complexes exhibit nematic phases. Sequential UV and visible light irradiation of the polymeric complex causes reversible photochemically induced phase transitions. The isothermal nematic–isotropic and isotropic–nematic transitions result from the trans-cis and cis-trans photoisomerization of the guest azobenzene in the host–guest system. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Side-chain liquid crystalline (SCLC) silphenylene-siloxane polymers with a phenyl benzoate mesogenic group and polymethylene spacers were prepared and characterized, and their properties were compared with those of equivalent SCLC polymers, SCLCPs, with a biphenyl mesogenic group. With identical spacers and terminal substituents, the melting temperatures of the former were much lower, but the isotropization temperatures were lowered to a lesser extent, than those of the latter, and, consequently, a more thermally stable nematic phase was obtained for the former. Both types of SCLCPs formed nematic phases, while polymethylsiloxanes with the same side-chain mesogens exhibited smectic phases with wider temperature ranges. The lower thermal stability of the mesophases in the silphenylene-siloxane SCLCPs compared to those of the SCLC polymethylsiloxanes can be attributed to both the rigidity of the backbone and the greater separation of the side-chains along the main chains of the former.  相似文献   

10.
慕斌  吴斌  谌东中 《高分子学报》2017,(10):1574-1590
盘状液晶聚合物兼具盘状液晶的光电性能和聚合物的柔韧性以及优异的成膜加工性能,有望发展成为新一代先进有机聚合物柔性光电功能材料.本文介绍苯并菲盘状侧链液晶聚合物的研究进展,主要结合我们研究组的工作,重点评述采用受控/活性自由基聚合方法可控合成这类侧链液晶聚合物以及对分子量效应和间隔基长度影响等基本问题的阐明.我们采用可逆加成-断裂链转移(RAFT)聚合第一次成功实现了分子量窄分布的苯并菲聚丙烯酸酯侧链盘状液晶聚合物的可控制备.首先提出盘单元局部簇集的分立短柱堆积(DCS)模型,合理解释了聚合度20左右出现的显著分子量效应,尤其揭示并提出了盘状侧链液晶聚合物的正耦合效应(PCE)理论,即短间隔基的较强耦合作用更有利于其有序柱状相的形成,与棒状侧链液晶聚合物经典的柔性长间隔基去耦合理论形成鲜明对照,补充了缺失的理论短板.基于这些原则,我们设计合成的丁氧基苯并菲聚丙烯酸酯侧链盘状液晶聚合物,经飞行时间谱(TOF)测试,表现出比文献报道值高1~2个数量级的载流子迁移率.进一步在手性客体分子掺杂诱导组装形成单手性螺旋结构聚合物复合物,以及拓扑受限环状聚合物和嵌段共聚物的受控制备等方面开展了比较系统的大分子工程实践.盘状侧链液晶聚合物的可控制备及其显著不同于棒状液晶聚合物体系的一些基本特征的阐明,为这类重要有机聚合物半导体材料的理性设计与可控合成提供理论指导,也为加速推进其光电器件化应用奠定基础.  相似文献   

11.
A new homologous series of SCLCPs containing the 4-cyanobiphenyl mesogenic group attached to the polymaleimide backbone through paraffinic spacers of two to eight methylene units have been prepared. All the polymers exhibit liquid crystalline behavior; specifically SAd- (or SC-) like and nematic phases are observed. The glass transition temperature decreases from 150 to 43°C on increasing spacer length. The isotropization temperatures exhibit an odd–even effect on varying the length and parity of the spacer, in which the odd members exhibit the higher values. This is attributed to the change in the average shape of the side chain as the parity of spacer is varied. The isotropization temperatures (>300–120°C) and the mesophase thermal stabilities (190–60°C) are high. Comparison is made with polymers containing the same mesogenic group attached to backbones of decreasing rigidity. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2531–2546, 1998  相似文献   

12.
We report the synthesis and investigation of a new self-assembled benzoylhydrazine-based compound, namely 1,2-bis[4-(4-(10-decyloxy)phenylazo)]benzoylhydrazine and their hydrogen-bonded complexes with different carboxylic acid derivatives, of which some exhibit liquid crystalline properties and some are non-mesogens. The conversion of the non-liquid crystalline target compound that is free from carboxylic acid to liquid crystalline complexes containing various carboxylic acids can probably be rationalised through the breaking of intermolecular hydrogen bonding within the supramolecular assembly by carboxylic acid dopants. The enhancement of liquid crystalline properties of benzoylhydrazine compounds with respect to various carboxylic dopants is documented. Other salient features can be exemplified by the formation of discotic columnar phase as shown by the azo-linkage containing 4-(4′-(10-decyloxy)phenylazo)benzoic acid-doped complex.  相似文献   

13.
A series of fluorene‐based rod–coil liquid crystal polymers with different lengths of the coil segments on backbones were designed and synthesized by a palladium‐catalyzed Suzuki coupling‐reaction. The thermal stability, the UV–Vis absorption and fluorescence spectra in chloroform solution and thin film, the electrochemical properties, thermal behavior, and morphology of these rod–coil polymers were investigated. The thermal stability of these polymers steadily decreased on increasing the length of the coil segments on the backbone; their optical and electrochemical properties did not exhibit noticeable dependence on the weight fraction of the coil segments. However, the shoulder emission and the full width at the half‐maximum (FWHM) in PL spectra of the films increased, whereas the oxidation onset potentials and the corresponding HOMO energy levels decreased with the increase in the weight fraction of the coil segments, which was assigned to microphase separation and formation of folded chain conformation as the weight fraction of the coil segments increased. These polymers displayed a characteristic liquid crystalline texture. The variation of the weight fraction of the coil segments obviously affected the thermal behavior and morphology of these rod–coil polymers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Ferrocene‐containing polyphosphate and phosphonate esters were synthesized by the solution polycondensation method. The structure of the polymers was confirmed using various spectroscopic techniques. The formation of two types of chain blocks was confirmed by 31P NMR spectroscopy. Hot stage optical polarized microscope (HOPM) analysis revealed that all the polymers have a liquid–crystalline property. The char yields of the synthesized similar polymers were much higher than those of nonphosphorus polymers already reported in the literature. DSC analysis confirmed our predictions over the liquid–crystalline property, glass‐transition temperature, isotropization temperature, and thermal stability of the polymers. The effects of substitution on the side chain, structure of the liquid‐–crystalline phase, and thermal stability of the polymers have also been discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2396–2403, 2001  相似文献   

15.
A series of fluorene-alt-benzene based conjugated main chain polymers chemically attached with alkyl side chains of different lengths on phenylene rings were designed and synthesized by a palladium catalyzed Suzuki coupling reaction. The UV-vis absorption and fluorescence spectra, thermal stability of spectral property, phase transition behavior and morphology of the synthesized polymers were investigated. With increasing the length of the alkyl side chain, the UV and fluorescence spectra exhibit an obvious blue shift compared with those of the unsubstituted polymer. The alkyl substitution improves the thermal spectral stability of the polymers due to the steric hindrance of the alkyl side chains, thus leading to efficient separation of the main chain backbones. The phase transition behavior is closely related to the length of the alkyl side chains attached on the phenylene rings. The annealed films of the polymers display characteristic nematic liquid crystalline texture. TEM observations indicate that solvent-cast thin deposits of all the polymers show typical fibrillar morphology.  相似文献   

16.
Luminescent lanthanide-containing chiral liquid crystalline polymers are graft-copolymerised using poly(methylhydrogeno)siloxane (PMHS), crosslinking agent, liquid crystalline monomer and lanthanide complexes. The chemical structures of the monomers are characterised by FTIR, 1?H NMR and elemental analyses. The mesomorphic properties and phase behaviour are investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy and X-ray diffraction. The polymers containing less than 9 mol% of the crosslinking units reveal reversible mesomorphic phase transition, wide mesophase temperature ranges and high thermal stability. With the introduction of lanthanide complex units, the polymers are enabled with the significant luminescent properties. The temperature dependence of fluorescence intensity was studied in the liquid crystalline phase. The IR imaging shows that the lanthanide complex units evenly distribute in polymers.  相似文献   

17.
A new series of liquid crystalline styrene-based monomers is described. These monomers are prepared by the DCC-mediated esterification reaction between 4-[11-(4-vinylphenoxy)undecyloxy]benzoic acid and a range of phenols chosen due to their proven utility in the synthesis of liquid crystals. Most members of the series display thermally stable (enantiotropic) nematic phases, although a few give only monotropic nematic phases. By incorporating the (S)-2-methylbutyl side chain, monomers that exhibit the chiral nematic phase can be obtained. Predictably, monomers derived from phenols containing an additional ring as substituent (e.g. 4-cyano-4'-hydroxybiphenyl) display relatively high transition temperatures. In contrast, monomers derived from simple 4-n-alkylphenols possess a nematic phase, which is accessible at moderate temperatures. In addition, a eutectic mixture derived from these monomers has a melting point only just above room temperature, which is an advantage for the fabrication of robust films via the in situ photopolymerization process. Standard free radical polymerization of a number of these monomers provides side chain liquid crystal polymers, SCLCPs, with mesophases that are stable over a wide temperature range. For a homologous series of SCLCPs containing a terminal n-alkyl chain on the mesogenic group, an unexpected but distinct odd-even effect is observed.  相似文献   

18.
报道了新型的含对甲氧基苯氧羰基偶氮苯基团的甲基丙烯酸酯单体与含对甲氧基苯氧羰基苯基团的甲基丙烯酸酯单体的合成及其自由基共聚合.利用1H NMR、IR、UV Vis、元素分析、GPC、TG DTA、POM及X 射线衍射等手段对偶氮单体及聚合物的结构与性能进行了表征,证明两种单体的共聚合产物为无规共聚物,而且各聚合物均具有较好的热稳定性.研究结果还表明,偶氮单体与聚合物在升温过程中均显示出向列相液晶织构,且聚合物的液晶相范围随偶氮含量的增加而变宽.  相似文献   

19.
We modified poly(epichlorohydrin) (PECH) with biphenyl carboxylic and naphthalene carboxylic acid derivatives which contains propargyloxy moieties. The linear polymers were characterized by NMR and IR spectroscopy, elemental analysis, DSC and TGA. We obtained only one side chain liquid crystalline. A smectic A mesophase of this biphenyl derivative was identified by DSC, light polarized optical microscopy and X‐ray diffraction. Thermal crosslinking of the aryl propargyl ether group via sigmatropic rearrangement took place while the material was in the isotropic phase. Partially curing this reactive liquid crystalline polymer resulted in the formation of an anisotropic elastomer when the curing was radically initiated in the range of mesophase stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3883–3892, 2002  相似文献   

20.
Long-alkyl tail triphenylene (TP) side-chain liquid crystalline polymers (SCLCPs) with different spacer length (P-m-TP,m =2,3,4,6,8,which is the number of carbon atom in the flexible alkyl spacers) have been successfully synthesized via free radical polymerization.The differential scanning calorimetry (DSC),polarized light microscopy (POM),ultraviolet-visible spectroscopy (UV-Vis),wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) measurements were performed to investigate the influence of multiple effects on the self-organization behaviors of P-m-TP,including steric effect,decoupling effect and π-π stacking effect.The experimental results revealed that P-m-TP (m =2,3,4) formed the columnar phase which was developed by the TP moieties and the main chain as a whole,suggesting that the side-chains had strong steric effect even though the number of spacer length (m)exceeded 4.In addition,the clearing points (Tis) of the polymers were above 300 ℃.When m =6 and 8,the polymers displayed hexagonal columnar phase and exhibited the low Tis (91 and 80 ℃ respectively),originating from the self-assembly of triphenylene due to the decoupling effect and π-π stacking effect.This work offers a viable and inspiring pathway to control the phase transition temperature and phase structure of TP SCLCPs via simply tailoring the spacer length and increasing the alkyl tail length of TP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号