首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time pressure-volume-temperature (PVT) measurements for the crystal-like smectic E phase have been performed. The phase diagram of 4'- n -octyl-4-isothiocyanatobiphenyl 8BT has been recently established using differential thermal analysis up to 250 MPa. 8BT exhibits a splitting of the clearing line above 170 MPa. PVT data have been measured in the same pressure range for temperatures between 313 and 393 K. Volume and enthalpy changes accompanying the clearing line of 8BT are also presented. The configurational part of the entropy change at the CrE-I transition of 8BT amounts to ≈60%. Using the PVT data and recently published dielectric relaxation results, the isochoric activation energy was calculated (giving ≈50% of the activation enthalpy); this is compared with analogous results for other liquid crystals.  相似文献   

2.
The pressure-temperature phase diagram of n-octyl-isothiocyanato-biphenyl (8BT) in the pressure range up to 250 MPa (2.5 kbar) and the temperature range 250-400 K was established with the aid of DTA. At 1 atm the substance exhibits exclusively CrE polymorphism. At pressures above 190 MPa, the clearing line splits showing an additional phase which is not yet identified. Dielectric relaxation measurements on the CrE phase of 8BT were performed in the pressure range 0.1-120 MPa and the temperature range 304-345 K. A Debye-type relaxation process was observed in the frequency range 100 Hz-1 MHz. The longitudinal relaxation time τ, characterizing the molecular reorientations around the short axis, was analysed with respect to the pressure and temperature, yielding the activation volume, Δ# V = RT(? ln τ/?p)T, and activation enthalpy, Δ# H = R(? ln τ/? T-1)p, respectively. The results are compared with analogous data obtained recently for similar compounds having other liquid crystalline phases (N, SmA).  相似文献   

3.
The synthesis and pressure–volume–temperature (PVT), differential thermal analysis (DTA), dielectric and X-ray diffraction data of 2-(4-octylcarbonyloxyphenyl)-5-decylpyrimidine (10PBO8) are presented. The substance exhibits two crystalline and smectic C (SmC) phases on heating and a SmC–monotropic crystalline smectic B (SmBcr) SmBcr–crystal sequence of phase transitions on cooling. Above ca. 15 MPa, the SmBcr phase becomes enantiotropic (reversible polymorphism). The phase behaviour and molecular dynamics in the liquid crystalline phases are analysed and discussed, with the conformational component of the total entropy for the SmC–isotropic liquid transition estimated. We also calculate from the PVT results the potential parameter characterising the steepness of the interaction potential.  相似文献   

4.
《Liquid crystals》1998,25(2):253-261
Dielectric relaxation studies have been performed on trans -4- n -octyl-(4-cyanophenyl)is cyclohexane (8PCH) at ambient and high pressure (0.1-175MPa). Two experimental set-ups were applied: a time domain spectrometer (TDS) covering the frequency range 10 MHz-5 GHz, was used to study the relaxation processes in the isotropic phase (at ambient pressure); an impedance analyser (1 kHz-13MHz) was used for high pressure measurements on both the nematic (N) and isotropic (I) phases. The low frequency (l.f.) relaxation process connected with molecular rotations about the short axis is hindered by the activation enthalpy of 70 kJ mol-1 and 32.6kJ mol-1 in the N and I phases, respectively, whereas the high frequency process (rotations about the long axis) has an activation enthalpy of 22.6kJ mol-1 (isotropic phase). From the pressure and temperature dependencies of the l.f. relaxation time tau, the activation volume, enthalpy and energy were calculated. It was found that the energy barrier hindering the molecular rotations around the short axis in the nematic phase is influenced to about one half by the volume effects. The nematic potential q was estimated at various pressures and comprises 10 20% of the total energy barrier. The pressure dependence of q enabled the calculation of the order parameter S (p) with the aid of old (Maier and Saupe) as well as recent (Coffey et al.) theoretical formulae.  相似文献   

5.
This article reports on an experimental investigation of the equation of state and the transition behavior of main-chain thermotropic liquid crystalline polymers over a wide temperature range, and at pressures to 200 MPa. The materials studied were a series of azomethine ether polymers. A varying number n (= 4, 7, 8, 9, 10 and 11) of methylene spacer units in the backbone provided systematic variation of the structure. Experimental techniques used included high-pressure dilatometry (PVT measurements) to 200 MPa, high-pressure differential thermal analysis, also to 200 MPa, and conventional (atmospheric-pressure) differential scanning calorimetry (DSC). The equation of state of the materials can be well represented by the Tait equation in distinct regions, separated by a glass transition, Tg(P), a first-order transition to a nematic state, Tk-n(P), and a first-order transition to an isotropic melt state Tc(P). The atmospheric pressure values of Tk-n and Tc decreased with increasing number of spacer units and showed a clear odd-even effect. Tg and Tk-n both increased with pressure. The pressure dependence of Tc could not be observed due to the onset of degradation in the same temperature region. On isobaric cooling at 3°C/min, the crystallization from the nematic state occurred a few tens of degrees below Tk-n. This supercooling was independent of pressure for some materials, while for others it increased with increasing pressure. The values of the enthalpy and entropy associated with the first-order transition into the nematic state were lower than those of typical isotropic polymers at their melting transitions. The transition enthalpy did not have any systematic variation with increasing number of spacer units. Values of the transition enthalpy calculated from the Ciapeyron equation did not always agree with the values measured by DSC. This may be due to the two-phase nature of the low-temperature state. At the transition to the isotropic state, the transition enthalpy at P = 0 decreased with n and showed an odd-even effect. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The volume shrinkage during polymerization of a thermoplastic modified epoxy resin undergoing a simultaneous viscoelastic phase separation was investigated for the first time by means of pressure-volume-temperature (PVT) analysis. Varying amounts (0-20%) of poly(styrene-co-acrylonitrile) (SAN) have been incorporated into a high-temperature epoxy-diamine system, diglycidyl ether of bisphenol A (DGEBA)-4,4'-diaminodiphenyl sulfone (DDS) mixture, and subsequently polymerized isothermally at a constant pressure of 10 MPa. Volume shrinkage is highest for the double-phased network-like bicontinuous morphology in the SAN-15% system. Investigation of the epoxy reaction kinetics based on the conversions derived from PVT data established a phase-separation effect on the volume shrinkage behavior in these blends. From subsequent thermal transition studies of various epoxy-DDS/SAN systems, it has been suggested that the behavior of the highly intermixed thermoplastic SAN-rich phase is the key for in situ shrinkage control. Various microscopic characterizations including scanning electron microscopy, atomic force microscopy, and optical microscopy are combined to confirm that the shrinkage behavior is manipulated by a volume shrinkage of the thermoplastic SAN-rich phase undergoing a viscoelastic phase separation during cure. Consequently, a new mechanism for volume shrinkage has been visualized for the in situ polymerization of a thermoplastic-modified epoxy resin.  相似文献   

7.
DTfBT‐Th3, a new conjugated polymer based on dithienobenzothiadiazole and terthiophene, possesses a bandgap of ≈1.86 eV and a HOMO level of −5.27 eV. Due to strong interchain aggregation, DTfBT‐Th3 can not be well dissolved in chloro­benzene (CB) and o‐dichlorobenzene (DCB) at room temperature (RT), but the polymer can be processed from hot CB and DCB solutions of ≈100 °C. In CB, with a lower solvation ability, a certain polymer chain aggregation can be preserved, even in hot solution. DTfBT‐Th3 displays a field‐effect hole mobility of 0.55 cm2 V−1 s−1 when fabricated from hot CB solution, which is higher than that of the device processed from hot DCB (0.16 cm2 V−1 s−1). In DTfBT‐Th3‐based polymer solar cells, a good power conversion efficiency from 5.37% to 6.67% can be achieved with 150−300 nm thick active layers casted from hot CB solution, while the highest efficiency for hot DCB‐processed solar cells is only 5.07%. The results demonstrate that using a solvent with a lower solvation ability, as a “wet control” process, is beneficial to preserve strong interchain aggregation of a conjugated polymer during solution processing, showing great potential to improve its performances in optoelectronic devices.

  相似文献   


8.
Langmuir films of binary mixtures of the following liquid crystal materials: 4-octyl-4′-cyanobiphenyl (8CB) or 4-pentyl-4″-cyano-p-terphenyl (5CT) with 4-(trans-4'-octylcyclohexyl)isothiocyanatobenzene (8CHBT), trans-4-octyl(4′-cyanophenyl)cyclohexane (8PCH) or 4-octyl4′-isothiocyanatobiphenyl (8BT) were investigated. Surface pressure-mean molecular area isotherms were recorded at various mixture compositions. It was found that only liquid crystal materials for which the molecules have a terminal -CN group are able to form a stable monolayer at the air-water interface. Moreover, information about the miscibility or the phase separation of the two components in the mixures was obtained by using the excess area criterion and surface phase rules.  相似文献   

9.
The coordination complex of Cu (II) with the Schiff base derived from 4-chloroaniline with salicylaldehyde have been synthesized and characterized by micro analytical data; FT–IR, UV–Vis, FAB-mass and thermal analysis studies. Thermal data show degradation of complexes. We carried out thermal analysis at three different heating rates viz. 5, 10 and 20 °C per min. The activation thermodynamic parameters, such as activation energy (E*), entropy of activation (ΔS*), enthalpy of activation (ΔH*) and Gibbs free energy (ΔG*) have been calculated with the help of TG, DTA and DTG curves using Coats–Redfern method. The stoichiometry of the complexes are in 1:2 (M:L) molar ratio. Synthesized complex has been tested for their reactivity and substitution behaviour.  相似文献   

10.
Model ring systems 2′-deoxy-2′-fluororibofuranose and deoxyribofuranose have been investigated using ab initio calculations with the 3–21G basis set. The energy barrier to pseudorotation between the N and S states has been evaluated for the three preferred orientations of the (3′)-OH group. Positions of the energy minima and the transition state have been optimized with respect to the (3′)-OH orientation. The barrier to pseudorotation of 2′-deoxy-2′-fluorofuranose is high and asymmetrical (ΔEN→S ≈ 20, ΔEN←S ≈ 8 kJ/mol), whereas the barrier of 2′-deoxyfuranose is lower and almost symmetrical (ΔE ≈ 11–12 kJ/mol). The results obtained show that the preferred configuration of the 2′-deoxy-2′-fluororibo-furanose (N state) is stabilized by an internal O(3′)-H…?F interaction in accord with the crystallo-graphic data.  相似文献   

11.
Knowledge of the volumetric or pressure–volume–temperature (PVT) profile of molten polymers is important for both engineering and polymer physics. Ihm–Song–Mason (ISM) equation of state (EOS) has been employed to predict the volumetric properties of 12 molten polymers. The significance of the present paper is three temperature-dependent parameters of the ISM EOS to be determined using corresponding states correlations based on the molecular scaling constants, dispersive energy parameters between segments/monomers (ε) and segment diameter (σ) rather than bulk properties, e.g. the liquid density and temperature both at normal boiling point. The ability of the ISM EOS has been evaluated by comparing the results with 1390 literature datapoints for the specific volumes over the temperature range from 293 to 603.5 K and pressure range from 0.1 to 200 MPa. The average absolute deviation (AAD) of the calculated specific volumes from literature data was found to be 0.52%. The isothermal compressibility coefficients, κT values of molten polymers have also been predicted using the ISM EOS. From 684 datapoints examined, the AAD of estimated κT was equal to 7.55%. Our calculations on the volumetric and thermodynamic properties of studied polymers reproduce the literature data with reasonably good accuracy.  相似文献   

12.
The temperature (T)—pressure (P) phase diagrams of aqueous solutions of a homologous series of cationic surfactants, tetradecyl- (C14TAB), hexadecyl- (C16TAB), and octadecyltrimethylammonium bromide (C18TAB), have been determined by observing the sudden change of the transmittance accompanying the phase transition under high pressure up to 160 MPa. Regarding three kinds of phase transitions which have been previously assigned by the differential scanning calorimetry (DSC) (S. Kaneshina and M. Yamanaka, J. Colloid Interface Sci.131, 493, 1989), all the transition temperatures were linearly elevated by applying pressure. The volume changes associated with the transitions were estimated from the Clapeyron—Clausius equation by using the values of the T—P slopes on the phase diagrams and of the transition entropies taken from the DSC study. A chemical potential vs pressure profile, of which slope reflects the partial molar volume, among the states of surfactant assemblies, i.e., micelle, gel, and coagel, was drawn schematically on the basis of the transition volumes. The phase boundary between the coagel phase and the micellar solution should be the critical solution line of the surfactant, representing the pressure dependence on the Krafft temperature. In the C18TAB-water system, the phase boundary line between the metastable gel and the supercooled micelle had a break point at 45 MPa, suggesting the existence of a new pressure-induced mesophase above 45 MPa. The metastable gel phase of C14TAB disappeared in the pressure range up to 160 MPa.  相似文献   

13.
A new cubic three-parameter equation of state has been proposed for PVT and VLE calculations of simple, high polar and associating fluids. The parameters are temperature dependent in sub-critical region, but temperature independent in super-critical region. The results for 42 simple and 14 associative pure compounds indicate that the calculated saturation properties and volumetric properties over the whole temperature range, up to high pressures, by the proposed equation of state (EOS), were in better agreement with the experimental data, compared with those obtained by the five well-known EOSs (P–R, P–T, Adachi et al., Yu–Lu, and M4). Two derivative properties, molar enthalpy and heat capacity of water and ammonia have been calculated, and demonstrated the thermodynamic consistency of the EOS parameters. Also VLE calculations have been performed for 41 binary mixtures of different type of fluids, including those of interest in petroleum industry. The results indicated the high capability of the proposed EOS for calculating the thermodynamic properties of pure and fluid mixtures.  相似文献   

14.
《Liquid crystals》1998,24(2):201-210
The molar heat capacity of the rod-like compound 4-(trans-4-propylcyclohexyl)benzonitrile (3-CBCN), purity of 99.8mol%, has been measured with an adiabatic calorimeter at temperatures between 15 and 385K. 3-CBCN is a nematogenic mesogen, whose melting and clearing points are 316.33 and 319.09 K, respectively. The enthalpy and entropy gained at fusion are 20.4 kJmol -1 and 64.4 J K -1 mol -1, respectively; those for the nematic-to-isotropic transition are 1.1 kJmol -1 and 3.5 J K -1 mol -1 respectively. 3-CBCN exhibits a supercooled nematic phase, whose molar heat capacities have been measured from 25 K below the melting point. The molar and transition entropies of 3-CBCN are discussed in relation to those of 4-propylbiphenyl-4-carbonitrile (3-BBCN) and trans,trans-4'-propylbicyclohexyl- 4-carbonitrile (3-CCCN). There seems to exist a correlation between these values and mesophase stability. Finally, Eidenschink's theoretical model for the nematic-to-isotropic transition has been applied to 3-CBCN; the transition enthalpy estimated according to this model agrees well with the observed value.  相似文献   

15.
Poly(3-hydroxybutyrate) (P3HB), a biologically produced, biodegradable natural polyester, exhibits excellent thermal and barrier properties but suffers from mechanical brittleness, largely limiting its applications. Here we report a mono-material product design strategy to toughen stereoperfect, brittle bio or synthetic P3HB by blending it with stereomicrostructurally engineered P3HB. Through tacticity ([mm] from 0 to 100 %) and molecular weight (Mn to 788 kDa) tuning, high-performance synthetic P3HB materials with tensile strength to ≈30 MPa, fracture strain to ≈800 %, and toughness to 126 MJ m−3 (>110× tougher than bio-P3HB) have been produced. Physical blending of the brittle P3HB with such P3HB in 10 to 90 wt % dramatically enhances its ductility from ≈5 % to 95–450 % and optical clarity from 19 % to 85 % visible light transmittance while maintaining desirably high elastic modulus (>1 GPa), tensile strength (>35 MPa), and melting temperature (160–170 °C). This P3HB-toughening-P3HB methodology departs from the traditional approach of incorporating chemically distinct components to toughen P3HB, which hinders chemical or mechanical recycling, highlighting the potential of the mono-material product design solely based on biodegradable P3HB to deliver P3HB materials with diverse performance properties.  相似文献   

16.
Poly (vinylidene fluoride) (PVF2) produces thermoreversible gel in camphor when quenched to 25°C from the melt under sealed condition. The SEM micrograph of dried PVF2/camphor gel (Wequation/tex2gif-inf-3.gif= 0.25) indicates presence of fibrillar network structure and the gels at different composition shows reversible first order phase transition. The phase diagram of the gel suggest the formation of a polymer- solvent complex. The melting enthalpy gives a stoichiometric composition of the complex at Wequation/tex2gif-inf-5.gif= 0.25. This corresponds to a molar ratio of PVF2 monomer/camphor ≈ 4/5. Temperature-dependent synchroton experiments further support the conclusions derived from the phase diagram.  相似文献   

17.
The effect of temperature during cellulose compression has been studied using mechanical testing, particle size analysis, density and pressure–volume–temperature (PVT) measurements, crystallinity index, scanning electron microscope photographs and water sorption isotherms. Commercial cellulose powder samples with different crystallinity levels were compacted at high pressure (177 MPa) for 10 min at two different temperatures: 25 and 160 °C. Three point bending test results for compressed samples are discussed. When pressure was applied directly to powders at room temperature, the cellulose sample with the highest level of crystallinity showed an increase in its crystallinity index of about 5 %, while this was about 22 % for the sample with the lowest level. These increases were even higher at 160 °C attaining 8 and 33 % respectively. Using density measurements, a densification phase related to this crystallinization was observed, and the PVT diagrams from different cellulose samples showed that this was associated with high temperatures. Water sorption isotherms were made on cellulose samples before and after compression. They showed a diminution of cellulose sorption capacity after compression at 160 °C, revealing the effect of temperature on high-pressure cellulose compression, reducing specific surface area. Events of this nature suggest a sintering mechanism, when temperature is associated with high pressure during cellulose compression.  相似文献   

18.
Experimental data of excess molar enthalpy (H mE) and excess molar heat capacity (C pmE) of binary mixtures containing (1-heptanol or 1-octanol)+(diethylamine or s-butylamine) have been determined as a function of composition at 298.15 K and at 0.1 MPa using a modified 1455 Parr solution calorimeter. The excess molar enthalpy data are negative and show parabolic format over the whole composition range; however, the excess molar heat capacity values, whose curves show a S-shape, are positive in the 0.0 to 0.7 molar fraction range and negative between the molar fraction values 0.7 to 1.0. The applicability of the ERAS-model to correlate the excess molar enthalpy data was tested. The calculated data values are in good agreement with the experimental ones. The experimental behavior of H mE is interpreted in terms of specific interactions between 1-alkanol and amine molecules.  相似文献   

19.
The phase transition behaviour of an optically isotropic, thermotropic cubic mesogen 1,2-bis-(4-n-octyloxybenzoyl)hydrazine, BABH(8), was investigated under pressures up to 200 MPa using a high pressure differential thermal analyser, wide-angle X-ray diffraction and a polarizing optical microscope equipped with a high pressure optical cell. The phase transition sequence, low temperature crystal (Cr2)-high temperature crystal (Cr 1)- cubic (Cub)-smectic C (SmC)-isotropic liquid (I) observed at atmospheric pressure, is seen in the low pressure region below about 30 MPa. The cubic phase disappears at high pressures above 30–40 MPa, in conjunction with the disappearance of the Cr1 phase. The transition sequence changes to Cr2-SmC-I in the high pressure region. Since only the Cub-SmC transition line among all the phase boundaries has a negative slope (dT/dP) in the temperature-pressure phase diagram, the temperature range for the cubic phase decreases rapidly with increasing pressure. As a result, a triple point was estimated approximately as 31.6 ±2.0 MPa, 147.0±1.0°C for the SmC, Cub and Cr1 phases, indicating the upper limit of pressure for the observation of the cubic phase. Reversible changes in structure and optical texture between the Cub and SmC phases were observed from a spot-like X-ray pattern and dark field for the cubic phase to the Debye-Sherrer pattern and sand-like texture for the SmC phase both in isobaric and isothermal experiments.  相似文献   

20.
The pressure-temperature ( p - T ) phase diagrams for four smectogenic members of the 4'-alkyl-4-cyanobiphenyl homologous series ( n CB, n =9, 10, 11 and 12) over the temperature range 320-410 K and pressure range 0.1-300 MPa (3 kbar) were constructed using DTA. At 1 atm 9CB exhibits nematic and smectic A d phases, while the other members show only the smectic A d phase. However, at elevated pressures the clearing line splits in the case of 10CB and 11CB which indicates the induction of a nematic phase. It was found that the triple point, where the isotropic, nematic and smectic phases coexist, is strongly shifted to higher pressures with increasing chain length. This was interpreted as being caused by a loss of the rod-like shape of the molecules containing longer alkyl tails which explore a range of conformations. The slope of the clearing line, d T /d p , depends strongly on the length of the alkyl chain for the n CB series, but does not show a step-wise change between the nematogenic and smectogenic members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号