首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Liquid crystals》2000,27(4):483-489
We have synthesized series of comb-like polyimides with mesogenic units in their side groups. Such comb-like polyimides were obtained by polycondensation of aromatic diamines bearing biphenyl-based mesogenic moieties with bicyclo[2,2,2]oct-7-ene 2,3,5,6-tetracarboxylic dianhydride (BCDA). The different diamines, with two lengths of spacer (with 6 and 11 methylene groups), were synthesized in three steps using as mesogenic groups: biphenyl, 4-cyanobiphenyl and 4-(2-methyl-1-butoxy)biphenyl. The synthesis of the polyimides was performed in two steps: polycondensation of a dianhydride with a diamine in N-methyl-2-pyrrolidone at room temperature giving the corresponding polyamic acid, followed by thermal cyclization into the corresponding polyimide. The comb-like polyimides were studied by X-ray diffraction between room temperature and 250°C. Two types of smectic structure were established: SmA1 for the long spacer and SmC1 for the short spacer.  相似文献   

2.
Dianhydrides of alicyclic tetracarboxylic acids were synthesized by chemical modification of tri-cyclodecenetetracarboxylic dianhydride and its chloro-containing derivatives. By polycondensation of these di-anhydrides with diamines polyimides were obtained. Thermal and thermooxidative degradation of these polyimides are discussed. By the interaction of polyamic acid carboxylic groups with diamines in presence of phosphorus pentoxide a number of polyimidoamidines have been synthesized, some physico-chemical properties of them are studied.  相似文献   

3.
New aromatic diamines containing π-conjugated heterocyclic rings were synthesized, which emit blue light in the photoluminescence. Using these new monomers, soluble poly(amic acid)s were prepared by the polycondensations with pyromellitamic dianhydride, and thermally converted to the polyimides in films which emit intense blue-light. These polyimides are considered as potential candidate materials for fabricating optoelectronic devices which emit blue light. In addition, new poly(m-phenylene 4,4′-oxydiphthalimide)s containing various side chains were synthesized. For these polyimides, thermal properties were investigated with considering the chain flexibility of polymer backbone as well as the spacer and biphenyl mesogen end group in the side chains. In particular, these polyimides exhibited excellent performance in the rubbing process and the controlling of both the alignment and the pretilt of liquid-crystal (LC) molecules in the LC cell. This might be attributed mainly to a strong interaction between the biphenyl mesogen end group in the side chains and the mesogen unit of LC molecules.  相似文献   

4.
A series of aliphatic-aromatic polyimides have been synthesized. These polyimides were prepared by high-temperature polycondensation of the aliphatic diamines: 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane and 4,4-methylenebis(2,6-dimethylaniline) with 1,2,3,4-cyclopentanetetracarboxylic dianhydride. Various ratios of diamines (aromatic:aliphatic) have been applied for preparation of copolyimides. Polycondensation proceeded at 190 °C and produced copolyimides with reduced viscosities up to 0.92 dl/g. The polyimides were soluble in a wide range of organic, common solvents and showed high-thermal stability. In most cases these polymers formed flexible films which presented excellent transparency.  相似文献   

5.
A new six-membered tetracarboxylic dianhydride, 2,5-di(carboxymethyl)terephthalic dianhydride, was synthesized in six steps, starting with pyromellitic dianhydride. The polyimides were prepared from dianhydride and diamines in a two-step procedure. The polyamic acids, which were formed in the first step by the ring-opening polyaddition in DMAc, had inherent viscosities of 0.1–0.7 and were converted to the polyimides by thermal cyclodehydration. These polyimides were insoluble in organic solvents. Thermogravimetric analysis (TGA) in air and nitrogen atmospheres revealed that rapid decomposition began above 400°C for aromatic polyimides.  相似文献   

6.
Thianthrene - 2,3,7,8 - tetracarboxylic dianhydride - 5,5,10,10 - tetraoxide (TADATO), a dianhydride having two sulfonyls between two phenyl rings, was synthesized and polymerized with several diamines by a two-step method. Tough polyimide membranes were obtained with flexible diamines but not with rigid diamines. Most of TADATO-based polyimides are soluble in polar solvents such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone. IR study confirmed that almost complete imidization of TADATO-based poly(amic acid) membranes could be achieved by thermal treatment at 100, 200, and 300°C for each 1 h. In a series of polyimides based on 4,4′-oxydianiline, the polyimide from TADATO showed higher gas permeability coefficient of CO2 and higher selectivities of CO2/N2 and CO2/CH4 than those of polyimides from pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylic dianhydride, and was comparable to that from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 485–494, 1998  相似文献   

7.
New aromatic polyimides and polyamide-imides with phenylquinoxaline rings and dimethylsilane units have been synthesized by solution polycondensation reaction of aromatic diamines containing phenylquinoxaline units with bis(3,4-dicarboxyphenyl)-dimethylsilane dianhydride, or with a diacid chloride resulting from the reaction of this dianhydride with p-aminobenzoic acid. These polymers were easily soluble in organic solvents, such as N-methylpyrrolidinone and dimethylacetamide, and showed high thermal stability with decomposition temperature being above 440°C and glass transition temperature in the range of 245-285°C. Very thin coatings were deposited from polymer solutions onto silicon wafers and exhibited smooth, pinhole-free surface in atomic force microscopy investigations. Some of these polymers showed blue fluorescence in solution and films, with a maximum in the range of 415-425 nm.  相似文献   

8.
A series of indan‐containing polyimides were synthesized, and their gas‐permeation behavior was characterized. The four polyimides used in this study were synthesized from an indan‐containing diamine [5,7‐diamino‐1,1,4,6‐tetramethylindan (DAI)] with four dianhydrides [3,3′4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 3,3′4,4′‐oxydiphthalic dianhydride (ODPA), (3,3′4,4′‐biphenyl tetracarboxylic dianhydride (BPDA), and 2,2′‐bis(3,4′‐dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)]. The gas‐permeability coefficients of these four polyimides changed in the following order: DAI–BTDA < DAI–ODPA < DAI–BPDA < DAI–6FDA. This was consistent with the increasing order of the fraction of free volume (FFV). Moreover, the gas‐permeability coefficients were almost doubled from DAI–ODPA to DAI–BPDA and from DAI–BPDA to DAI–6FDA, although the FFV differences between the two polyimides were very small. The gas permeability and diffusivity of these indan‐containing polyimides increased with temperature, whereas the permselectivity and diffusion selectivity decreased. The activation energies for the permeation and diffusion of O2, N2, CH4, and CO2 were estimated. In comparison with the gas‐permeation behavior of other indan‐containing polymers, for these polyimides, very good gas‐permeation performance was found, that is, high gas‐permeability coefficients and reasonably high permselectivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2769–2779, 2004  相似文献   

9.
Organosoluble polyimides were synthesized with the alicyclic dianhydride 1,8‐dimethylbicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride and aromatic diamines. The polyimides possessed good solubility both in strong dipolar solvents and in common solvents; the thermal decomposition temperature of the polyimides exceeded 420 °C. Strong and flexible films of the polyimides, with the cutoff of ultraviolet–visible absorption lower than 310–320 nm, exhibited good features as the alignment layers for nematic liquid crystals with pretilt angles of 1.5–2.9°. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 110–119, 2002  相似文献   

10.
A new homologous series of thermotropic polyesters has been synthesized by polycondensation reaction between isophthaloyl chloride and mesogenic diols 4,4-bis(ω-hydroxyalkoxy)biphenyl in which the spacer length is varied from 3 to 6 methylene units. The thermal behavior of the polymers has been characterized using polarized light microscopy and differential scanning calorimetry (DSC). The odd members exhibit a smectic C (SC) phase in a narrow temperature interval, while the even members form a smectic A (SA) phase in a broader temperature range. All of the obtained compounds were characterized by conventional spectroscopic methods.  相似文献   

11.
A new kind of pyridine-bridged aromatic dianhydride monomer, 4-phenyl-2,6-bis[4-(3,4-dicarboxyphenoxy)phenyl]-pyridine dianhydride (PPDA), was successfully synthesized by modified Chichibabin reaction of benzaldehyde and substituted acetophenone, 4-(3,4-dicyanophenoxy)-acetophenone (DCAP), followed by acidic hydrolysis of the intermediate tetranitrile and cyclodehydration of the resulting tetraacid. The pyridine-bridged aromatic dianhydride was employed to synthesized a series of new pyridine-containing polyimides by polycondensation with various aromatic diamines in N-methyl-2-pyrrolidone (NMP) via the conventional two-step method, i.e. ring-opening polycondensation forming the poly(amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.49-0.63 dL/g, and most of them were soluble in aprotic amide solvents and cresols, such as N,N-dimethylacetamide (DMAc), NMP, and m-cresol, etc. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal stability with the glass transition temperatures (Tg) of 223-256 °C, the temperature at 5% weight loss of 523-569 °C, and the residue at 700 °C of 52.1-62.7% in nitrogen, as well as have outstanding mechanical properties with the tensile strengths of 70.7-97.6 MPa and elongations at breakage of 7.9-9.7%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous.  相似文献   

12.
As majority of polyheteroarylenes based on bis(naphthalic anhydrides), are difficult to process due to their infusiblity and insolubility in common organic solvents and solubility only in strong acids, this study is concerned with the synthesis and properties of new, easily processable polyimides and copolyimides containing naphthalene and oxadiazole rings. These polymers have been synthesized and their properties have been compared with regard to the influence of oxadiazole and naphthalene units on their physical properties. The polyimides were prepared by polycondensation reaction in solution of the aromatic diamines containing preformed oxadiazole ring with two dianhydrides having naphthalene units, at high temperature. Also, copolyimides were prepared by using a mixture of each naphthalene‐containing dianhydride, with hexafluoroisopropylidene‐dianhydride in the polycondensation reaction with the same diamino‐oxadiazoles. Most of the resulting polyimides and copolyimides were soluble in polar amidic solvents and in less polar solvents, and their solutions gave flexible films when spread onto glass plates. The thermal stability and glass transition temperature of these polyimides and copolyimides were measured and compared. The quality and the roughness of the spin‐coated films of these polymers were investigated by atomic force microscopy. The photoluminescence properties of the polymers in solution were studied to determine the color of emission. The UV absorption was also studied to determine the Stokes shift, and hence the possible reabsorption effects. The properties of the present polyimides make them attractive for applications in advanced optoelectronics and other related fields. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A new aromatic tetracarboxylic dianhydride having a crank and twisted noncoplannar structure, 2,2′-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with biphenyl-2,2′-diol, followed by hydrolysis and cyclodehydration. The biphenyl-2,2′-diyl-containing aromatic polyimides having inherent viscosities up to 0.66 dL/g were obtained by the conventional two-step procedure starting from the dianhydride monomer and various aromatic diamines. Most of the polyimides were readily soluble in amide-type solvents such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone. The aromatic polyimides had glass transition temperatures in the range of 205–242°C, and began to lose weight around 415°C, with 10% weight loss being recorded at about 500°C in air. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2021–2027, 1998  相似文献   

14.
New phenoxaphosphine-containing polyimides were synthesized from 10-phenylphenoxaphosphine-2,3,7,8-tetracarboxylic dianhydride 10-oxide (IV) and diamines via polyamic acids in two steps. (IV) was prepared by dehydration of 10-phenylphenoxaphosphine-2,3,7,8-tetracarboxylic acid 10-oxide (III) derived from 2,3,7,8-tetramethyl-10-phenylphenoxaphosphine (I) or 2,3,7,8-tetramethyl-10-phenylphenoxaphosphine 10-oxide (II) by pyridine-permanganate oxidation. (I) was synthesized from bis(3,4-dimethylphenyl)ether and phenylphosphonous dichloride by the Friedel-Crafts reaction. The resulting polyimides had reduced viscosities of 0.13–0.84 di/g in cone H2SO4 at 30°. They were also soluble in dichloroacetic acid and some of them dissolved in DMA, DMSO. DMF and chloroform. Aromatic phenoxaphosphine-containing polyimides exhibited excellent thermal properties and hardly degraded below about 500°; the aliphatic polyimides decomposed at around 500. The aromatic polyimides had thermal stability similar or superior to aromatic polypyromellitimides and better heat resistance than linear open-chain phosphorus-containing polyimides. These polyimides showed retardance to inflammation.  相似文献   

15.
Three new hydrazo-bridged diamines, 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl (BPD-2), 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl ether (SPD-2) and 4,4-bis [4-(4-aminophenyloxy) phenyl] hydrazine (APD-2), were synthesized by the reduction of three azo-diols, 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl (BPD), 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl ether (SPD) and azo-4-hydroxybenzene (APD), and polymerized with pyromellitic dianhydride (PM), 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP) and 3,4,9,10-perylenetetracarboxylic acid dianhydride (PR) either by one-step solution polymerization or by two-step procedure which includes ring-opening polyaddition to give poly(amic acid) followed by cyclic dehydration to polyimide. The monomers and polyimides were characterized by their elemental analyses, FTIR and 1H NMR spectroscopy. Glass transition temperatures of the polymers are quite high (175-310 °C), characteristic of polyimides. The decomposition temperatures for 10% weight loss fall in the range of 280-575 °C in nitrogen. Activation energies of pyrolysis for each of the polymers calculated from Horowitz and Metzger's method are also high (52.54-95.28 kJ mol−1). The inherent viscosities of the polyimides at a concentration of 0.5 g/dl in DMF range from 0.94 to 1.93 dl/g.  相似文献   

16.
A series of aromatic diamines containing pendent methoxy, phenoxy, and biphenoxy moieties were synthesized. By the reaction of diamines with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), several kinds of polyimides having bulky pendent ether groups were synthesized. Thermal properties and processability such as melt processability and solubility in organic solvents of obtained polyimides were investigated by focusing on the chemical structures of their repeating structure units. It was found that the thermal stability and melt processability of the polyimides did not strongly depend on the existence of bulky pendent phenoxy and biphenoxy moieties. Their solubility in organic solvents, however, was improved by introducing the bulky pendent ether groups such as methoxy, phenoxy, and biphenoxy moieties into their repeating structure units. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 971–978, 1998  相似文献   

17.
A series of aromatic diamines were polymerized with two aromatic dianhydrides, pyromellitic dianhydride and 3,3,4,4-biphenyltetracarboxylic dianhydride, and the resulting poly(amic acid)s were thermally cyclodehydrated to aromatic polyimides. The polyimides were characterized by determining the glass transition temperatures (Tg), thermal stability, coefficients of thermal expansion, and wide-angle X-ray diffraction. Structure-property relationships are elucidated and discussed in terms of the structural fragments in the polymer chain. The PMDA-based polyimides generally revealed a higher Tg than the corresponding BPDA-based analogues. Generally, the dilution of the imide content by the insertion of oxyphenylene segments into the diamines significantly reduced the Tg. The introduction of m- or o-phenylene units into the polymer backbone usually resulted in a decrease in Tg. The attachment of pendant groups on the backbone may lead to decreased or increased Tgs, depending on the structure of pendant groups. As evidenced by X-ray diffraction, the polyimides derived from rigid, rod-like diamines or the diamines having two or three p-oxyphenylene showed a higher crystalline tendency. The presence of aliphatic pendant groups slightly reduced the thermal stability of the polyimides. The other structural changes did not show a dramatic influence on the thermal stability. Some polyimides obtained from p- or m-phenylenediamine had low thermal expansion coefficients below 2×10−5°C−1.  相似文献   

18.
A series of sulfonated polyimides with increasing alkyl substituents in the o‐position to diamine were synthesized from 4,4′‐methylene dianiline, 4,4′‐diamine‐3,3′‐dimethyl‐diphenylmethane, and 4,4′‐diamine‐3,5,3′,5′‐tetraethyl‐diphenylmethane using 1,4,5,8‐naphthalenetetracarboxylic dianhydride and perylenetetracarboxylic dianhydride by chemical imidization method. 4,4′‐Diaminobiphenyl 2,2′‐disulfonic acid was used as sulfonated diamine. The variation in the membrane properties with increase in substitution was analyzed. Solubility increased with substitution whereas the thermal stability decreased with increase in substitution. Ion exchange capacity and water uptake reduced with increase in substitution because of the low sulfonic acid content at a particular weight due to the increased molecular weight of the repeating unit. The conductivity of the substituted diamines was higher than the unsubstituted diamines at higher temperature regardless of low ion exchange capacity and water uptake. The increase in conductivity with increase in temperature was more rapid in polyimides than in Nafion®115. Hydrolytic stability of the polyimides with substitution is more than the unsubstituted diamines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3621–3630, 2004  相似文献   

19.
Aromatic polyimides were prepared by polycondensation reaction of two aromatic diamines, such as 4,4′-diaminodiphenylmethane (DDM) and 3,3′-dimethyl-4,4′-diaminodiphenylmethane (MDDM), with aromatic dianhydrides, such as 4,4′-isopropylidene-diphenoxy-bis(phthalic anhydride) (6HDA), benzophenonetetracarboxylic dianhydride (BTDA) and hexafluoroisopropylidene-bis (phthalic anhydride) (6FDA). These polymers are soluble in polar aprotic solvents and can be cast into thin films from such solutions. The polyimides show high thermal stability, with decomposition temperature being above 430 °C in air, and high glass transition temperature being in the range of 200–287 °C. The free standing films, having the thickness of tens of micrometers, exhibited good mechanical and electrical insulating properties. The dielectric constant, molecular mobility and AC conductivity of thin films prepared from these polymers were investigated in detailed. The study of their dielectric behavior evidenced low dielectric constant values, in the range of 2.88–3.48 at 1 Hz at room temperature, and three relaxation processes (γ,β1 and β2) were observed at sub-glass temperatures for polyimides based on 6HDA and 6FDA and only two (γ and β) relaxations were detected for polyimides based on BTDA. The cooperativity of the molecular motions associated with the relaxation processes was discussed.  相似文献   

20.
Novel polyimides and polyimides having phenoxathiin units have been prepared. Polyamides with inherent viscosities in the range of 0.5–2.9 were readily prepared by the polycondensations of phenoxathiin diamines with aromatic diacyl chlorides and of aromatic diamines with new phenoxathiin diacyl chlorides. The polyimides were synthesized from phenoxathiin diamines and pyromellitic dianhydride by using a two-step procedure. The polyamic acids which formed in the first step had inherent viscosities ranging from 1.0 to 1.6, and they were converted to the polyimides by thermal cyclodehydration. Some of the phenoxanthiin-containing polyamides were highly soluble in polar amide solvents and dimethyl sulfoxide. A series of novel polymers containing phenoxathiin units were much more thermostable than the corresponding polymers having open-chain diphenyl ether linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号