首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Liquid crystals》2000,27(8):1011-1016
Recently, we reported on a light-induced anchoring transition of an azobenzene nematic from planar to homeotropic alignment. In the proposed model of the transition, the changes in shape of the liquid crystal molecules and of their net dipole moment, due to the photoisomerization, were considered to play a vital role in the occurrence of the transition. In order to assess the validity of this model, a study of the anchoring behaviour of nematic guest-host liquid crystal mixtures containing two photochromic dyes, 3,3'- and 4,4'-substituted azobenzenes, was carried out. The dyes have very similar molecular structures to that of the azobenzene nematic previously studied, and their molecules, having a linear shape in the trans-form, maintained this shape after photoisomerization in the case of the 3,3'-azo dye, and changed it to bent in the case of the 4,4'-azo dye. The dyes possessed similar net dipole moments that increased substantially after photoisomerization, resulting in a preferential adsorption of their cis-isomers on the solid substrate. However, only the mixture containing the 4,4'-azo dye exhibited an anchoring transition from planar to homeotropic alignment upon illumination with unpolarized UV light, a behaviour in excellent agreement with the prediction of the model for the light-induced anchoring transition. An anchoring transition from random planar to uniform planar alignment was found to take place in the mixtures when linearly polarized UV light was used, requiring, however, a different exposure time for the two dyes.  相似文献   

2.
《Liquid crystals》2000,27(1):51-55
The behaviour of a liquid crystalline azobenzene material possessing a nematic phase was studied under UV illumination. It was found that a uniformly aligned planar sample of the azobenzene undergoes a reversible orientation transition to homeotropic; this can be interpreted as an anchoring transition caused by the photo-isomerization of the azobenzene moiety in the molecular structure of the nematogen. A simple model taking into account the changes in the molecular shape, as well as the magnitude of the molecular net dipole moment, and the changes in the surface density of the cis-isomers with UV exposure time is proposed to explain the light-induced anchoring transition in the azobenzene nematic.  相似文献   

3.
The behaviour of a liquid crystalline azobenzene material possessing a nematic phase was studied under UV illumination. It was found that a uniformly aligned planar sample of the azobenzene undergoes a reversible orientation transition to homeotropic; this can be interpreted as an anchoring transition caused by the photo-isomerization of the azobenzene moiety in the molecular structure of the nematogen. A simple model taking into account the changes in the molecular shape, as well as the magnitude of the molecular net dipole moment, and the changes in the surface density of the cis-isomers with UV exposure time is proposed to explain the light-induced anchoring transition in the azobenzene nematic.  相似文献   

4.
The effects of the surface polarity of a glass substrate on the orientation of nematic liquid crystals (LCs) were studied using the polarised optical microscope and Fourier-transform infrared spectroscopy. On the surface of oxygen plasma treated glass, a homeotropic alignment of LCs was induced for LCs with negative dielectric anisotropy. This suggests that vertical orientation of LCs could be induced on a polar glass substrate without using an LC alignment layer. Upon cooling towards the isotropic–nematic transition, E7 with positive dielectric anisotropy changes its LC arrangement to isotropic, homeotropic, planar orientations in order. The nematic LC anchoring transition of E7 was interpreted by considering the competition between van der Waals forces and dipole interactions that control the alignment of LC molecules on a polar glass surface.  相似文献   

5.
The anchoring of liquid-crystal (LC) mesogens to the surfaces of colloids is an important factor in determining intercolloidal interactions and the symmetry of the ensuing colloidal assembly in nematic colloids. The dynamic control of surface anchoring could therefore provide a handle to tune the colloidal organization and resulting properties in these systems. In this article, we report our results on the study of thermotropic nematic LC (E7) dispersions of silica and glass microcolloids bearing photosensitive surface azobenzene groups. By the photoinduced modulation of the colloidal-LC interfacial properties, due to the trans-cis isomerization of azobenzene units, we tune the anchoring on silica colloids from homeotropic (trans-azobenzene) to homogeneous planar (cis-azobenzene) reversibly. In tune with the change in surface anchoring, the interparticle interactions were also dictated by dipolar and quadrupolar symmetries for homeotropic and homogeneous planar anchoring, respectively. In our experiments, we find that, in addition to the isomerization state of the surface-bound azobenzene units, the nature of the colloid plays a crucial role in determining the anchoring state obtained on applying photostimuli. We also study the LC anchoring on colloids as a function of the azobenzene surface density and find that beyond a threshold value the anchoring properties remain invariant.  相似文献   

6.
We report experimental studies on defects in a nematic liquid crystal with negative dielectric anisotropy mounted in a cell with perfluoropolymer-coated surfaces. The sample exhibits a discontinuous anchoring transition from planar to homeotropic on cooling at zero or a small electric field, and above a cross-over voltage a continuous ‘inverse Freedericksz transition’, at which the director starts tilting in opposite directions at the two surfaces. Defects of strength ±1/2 are either annihilated or expelled when the director tilts. On the other hand, disclination lines of ±1 which end in partial point defects (boojums) at the surfaces in the planar alignment regime acquire point defects of strength ±1 at the midplane of the cell when the director tilts. At a low enough temperature, the homeotropic anchoring becomes strong, and an electric field above the Freedericksz threshold generates the usual umbilic defects, which follow the dynamic scaling laws found in earlier studies.  相似文献   

7.
Anchoring interaction of MBBA and MBBA + 5CB nematic layers with monomolecular films of CTAB on ITO glass supports is studied by videomicroscopy in the presence of an electric field. Planar-planar or homeotropichomeotropic electrode substrates are used to make the nematic cells. The substrate symmetry is broken by coating only one electrode with self-assembled CTAB film. In a DC electric field we observe some new effects; (i) polarity-dependent breaking of anchoring and switching to two oblique states in dielectrically stable planar cells; (ii) a polarity-dependent flow-induced metastable anchoring transition in homeotropic cells to a planar or tilted alignment after the field is switched off. These results are discussed in terms of a surface transition assisted by electric transport of biphilic CTAB ions and by a surface memorization of the flow-induced planar alignment.  相似文献   

8.
Azoaromatic dyes have been extensively investigated over the past decade due to their potential use in a variety of optical devices that exploit their ultrafast photoisomerization processes. Among the azoaromatic dyes, Disperse Red 19 is a commercially available azobenzene nonlinear optical chromophore with a relatively high ground-state dipole moment. In the present study, we used ultrafast time-resolved spectroscopy to clarify the dynamics of a push-pull substituted azobenzene dye. Solution and film samples exhibited different ultrafast dynamics, indicating that the molecular environment affects the photoisomerization dynamics of the dye.  相似文献   

9.
We have studied the anchoring of the nematic liquid crystal 5CB (4'-n-pentyl-4-cyanobiphenyl) as a function of the surface wettability, thickness of the liquid crystal layer, and temperature by measuring the birefringence of a hybrid aligned nematic cell where the nematic material was confined between octadecyltriethoxysilane-treated glass surfaces, with one surface linearly varying in its hydrophobicity. A homeotropic-to-tilted anchoring transition was observed as a function of the lateral distance along the hydrophobicity gradient, typically in a region corresponding to a water contact angle of approximately 64 degrees. The effect of the nematic layer thickness was measured simultaneously by preparing a wedge cell where the thickness varied along the direction perpendicular to the wettability. The detailed behavior of the onset of birefringence was found to be consistent with a dual-easy-axis model that predicts a discontinuous anchoring transition from homeotropic to planar. The anchoring was independent of temperature, except within 1 degrees C of the nematic-to-isotropic transition temperature (T(NI)). As the temperature approached T(NI), the tendency for planar anchoring gradually increased relative to that for homeotropic anchoring.  相似文献   

10.
We have investigated the changes in crossed polariser optical textures produced by adsorption and UV polymerisation of a range of polymerisable surfactants at the interface between a nematic liquid crystal and water. Similar to non‐polymerisable surfactants, the adsorption of polymerisable surfactants with sufficiently long hydrophobic tail groups produces a transition from planar to homeotropic anchoring. UV polymerisation of surfactants with a polymerisable group located in the hydrophobic tail region changes the anchoring from homeotropic back to planar. Polymerisation in the hydrophilic headgroup region does not produce an optical transition. We demonstrate that these systems can be used to “write with light” in the interfaces and that they form the basis of a UV sensor device in which the optical response is visible to the naked eye.  相似文献   

11.
Kaznacheev and Sonin have presented a model to explain the so-called spontaneous Freedericksz transition in nematic liquid crystals (1983, Sov. Phys. solid Sr, 25, 528; 1984, Ibid, 26, 486). A surface polarization, coupled with the negative anisotropy of the nematic, turns the two homeotropic anchoring plates into planar anchoring plates. We show that this model, correctly solved, cannot explain the observed critical thickness. The spontaneous Freedericksz transition is in fact the surface instability of a hybrid cell with weak planar anchoring.  相似文献   

12.
The alignment of nematic liquid crystals by rubbed polyimide surfaces has been well-studied and developed. A novel polyimide film which induced a homeotropic alignment of the nematic liquid crystal without rubbing or with weak rubbing strength was presented. However, there was a transition from homeotropic to planar alignment of the nematic liquid crystal after strong rubbing. In order to study the transition, the polyimide surface was investigated by atomic force microscopy, surface free energy measurement and angle-resolved analysis X-ray photo-electron spectroscopy before and after rubbing with a velvet fabric. It was found that both the change of surface polarity and surface morphology were not the reasons for the transition. The droop of the side chain on the polyimide surface after the rubbing treatment was detected by angle-resolved analysis X-ray photo-electron spectroscopy. Owing to the special structure of the novel polyimide, the X-ray photo-electron spectroscopy was successfully used for the first time to analyse the conformational change of the side chain of a polymer. In conclusion, the transition of nematic liquid crystal alignment from homeotropic to planar after rubbing was influenced by the side chain conformation of the polyimide.  相似文献   

13.
A method for a continuous control of the pretilt angle of the easy axis in the range 0–90° degrees and of the anchoring strength by using nanostructured polymers as alignment layers is described. The nanostructured polymers are blends of two different side-chain polymers each of them promoting planar and homeotropic alignment, respectively. A model to interpret the alignment of a nematic liquid crystal induced by such polymer layers is proposed. We show that in this case the anisotropic part of the surface tension can be approximated by a simple extension of the Rapini–Papoular expression. The predicted trend of the pretilt of the easy axis versus the concentration of the side-chain polymer promoting the planar alignment, for instance, is in good agreement with the experimental data. We also show that the effective anchoring strength of the system depends on the concentration of the side-chain polymer promoting planar alignment, and exhibits a minimum for a well-defined value of this quantity. The results obtained in this work seems to be of importance for liquid crystal displays technology since the control of the pretilt and the anchoring strength strongly affect the performance of liquid crystal displays.  相似文献   

14.
《Liquid crystals》1997,23(1):1-8
The two-fold degenerate alignment of nematic liquid crystals provided by obliquely evaporated SiOx layers was studied as a function of temperature. A temperature induced anchoring transition from tilted to planar alignment with more than 80 degrees between their preferred directions was found. The director in the two-fold degenerate region seems to follow a circular sector from the uniform tilted to the uniform planar anchoring, as the temperature increases. The anchoring transition is reversible and reveals the existing coupling between the azimuthal and polar angles of the preferred directions of alignment. The applicability of the two-fold degenerate alignment and related anchoring transitions of nematic liquid crystals for devices is briefly discussed.  相似文献   

15.
A continuum model is employed to study systematically the optical response of hybrid-aligned nematic (HAN) liquid crystal cells under the application of an external electric field. The influence of the flexoelectric effect is discussed for a large range of anchoring strengths at the homeotropic alignment layer. It is shown that the optical response of HAN cells is governed by a complicated interplay between the flexoelectric coefficient and homeotropic anchoring strength. In particular, the calculations reveal that, for weak homeotropic anchoring, the flexoelectric effect leads to a non-linear voltage shift of the optical transmittance as a function of flexoelectric coefficient, and gives rise to an asymmetry in the transmittance-voltage curve. Finally, a comparison of the continuum-model simulations with recent experimental observations indicates that both the flexoelectric coefficient and the anchoring strength of the nematic liquid crystal MBBA on a homeotropic polyimide alignment layer are significantly lower than previously reported.  相似文献   

16.
A continuum model is employed to study systematically the optical response of hybrid-aligned nematic (HAN) liquid crystal cells under the application of an external electric field. The influence of the flexoelectric effect is discussed for a large range of anchoring strengths at the homeotropic alignment layer. It is shown that the optical response of HAN cells is governed by a complicated interplay between the flexoelectric coefficient and homeotropic anchoring strength. In particular, the calculations reveal that, for weak homeotropic anchoring, the flexoelectric effect leads to a non-linear voltage shift of the optical transmittance as a function of flexoelectric coefficient, and gives rise to an asymmetry in the transmittance–voltage curve. Finally, a comparison of the continuum-model simulations with recent experimental observations indicates that both the flexoelectric coefficient and the anchoring strength of the nematic liquid crystal MBBA on a homeotropic polyimide alignment layer are significantly lower than previously reported.  相似文献   

17.
We report the orientational behavior of nematic phases of 4-cyano-4'-pentylbiphenyl (5CB) on cationic, anionic, and nonionic surfaces before and after contact of these surfaces with solutions containing the negatively charged vesicular stomatitis virus (VSV). The surfaces were prepared on evaporated films of gold by either adsorption of poly-L-lysine (cationic) or formation of self-assembled monolayers (SAMs) from HS(CH2)2SO3- (anionic) or HS(CH2)11(OCH2CH2)4OH (nonionic). Prior to treatment with virus, we measured the initial orientation of 5CB (delta epsilon = epsilon(parallel) - epsilon(perpendicular) > 0) to be parallel to the cationic surfaces (planar anchoring) but perpendicular (homeotropic) after equilibration for 5 days. A similar transition from planar to homeotropic orientation of 5CB was observed on the anionic surfaces. Only planar orientations of 5CB were observed on the nonionic surfaces. Because N-(4-methoxybenzylidene)-4-butylaniline (MBBA, delta epsilon = epsilon(parallel) - epsilon(perpendicular) < 0) exhibited planar alignment on all surfaces, the time-dependent alignment of 5CB on the ionic surfaces is consistent with a dipolar coupling between the 5CB and electrical double layers formed at the ionic interfaces. Treatment ofpoly-L-lysine-coated gold films (cationic) with purified solutions of VSV containing 10(8)-10(10) plaque-forming units per milliliter (pfu/mL) led to the homeotropic alignment of 5CB immediately after contact of 5CB with the surface. In contrast, treatment of anionic surfaces and nonionic surfaces with solutions of VSV containing approximately 10(10) pfu/mL did not cause immediate homeotropic alignment of 5CB. These results and others suggest that homeotropic alignment of 5CB on cationic surfaces treated with VSV of titer > or = 10(8) pfu/mL reflects the presence of virus electrostatically bound to these surfaces.  相似文献   

18.
以 4 ,4′ 二 (1,2 苯二酸酐 4 羧酸酯 )偶氮苯为二酐单体 ,4 十六烷氧基 4′ ,4″ 二氨基三苯甲烷为二胺单体 ,通过缩聚反应合成了可溶性偶氮聚酰亚胺 .采用红外光谱、氢核磁共振、紫外光谱和热分析等手段 ,对产物的结构、热性能及光学性能等进行了表征 .在紫外光辐照下 ,上述聚合物表现出明显的光色效应 .经线性偏振紫外光 (LPUV)辐射后的上述偶氮聚酰亚胺定向层能诱导液晶盒中液晶分子发生定向沿面排列 ,且取向均匀 .上述实验表明 ,合成的偶氮聚酰亚胺是一类潜在的液晶光定向材料 .  相似文献   

19.
ABSTRACT

Three 1,4-disubstituted anthraquinone dyes with bis(4-n-butylphenyl) substituents connected via amine or amide linking groups have been studied as guest molecules dissolved in the nematic host E7. UV-visible absorption spectroscopy has shown each of the dyes to exhibit multiple absorption bands in the visible region, and dichroic order parameters obtained from polarised spectra of aligned guest–host samples were shown to differ significantly between the bands for each dye, and between the dyes. Time-dependent density functional theory calculations indicated that each dye exhibits several transitions, giving transition dipole moment vectors with a range of orientations, and fully atomistic molecular dynamics simulations of the guest–host mixtures showed differences in the calculated molecular alignments of the dyes. Combining the results from these two sets of calculations enabled a comparison of molecular alignment models based on the moments of inertia and the surface tensors of the dyes. The match between calculated and experimental values was improved significantly when using the surface tensor rather than the moment of inertia model, indicating that the shapes of the molecular surfaces of these dyes are crucial to their alignment. A novel method of calculating polarised UV-visible absorption spectra of dyes in liquid crystal hosts is also presented.  相似文献   

20.
Abstract

Liquid-crystalline side group copolymers containing dyes can be macroscopic-ally oriented and the orientation can be locked-in below the glass transition temperature. The order parameters of anthraquinone dyes and a trisazo dye in nematic and smectic glasses were determined by optical absorption measurements. The dyes have higher degrees of order in the smectic glass than in the nematic glass. A comparison of order parameters of covalently bonded dyes with order parameters of monomeric dyes dissolved in the corresponding homopolymers demonstrates the influence of covalently anchoring the dye to the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号