首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction in the system of sodium dodecyl sulfate (SDS) solution and AB-17 highly basic anion-exchange resins in OH and Cl forms were considered, and the distribution coefficients (K d) of the substance in the resin-solution ion exchange system were calculated. It was found that K d decreases with increasing concentration of the initial solution, reaching a maximum value at the critical micelle concentration (CMC) of SDS. The effective diffusion coefficients of the surfactant in the anion-exchange resin phase were calculated; based on the IR spectroscopy data, the mechanism of SDS absorption was proposed.  相似文献   

2.
In the present work, the structural and dynamical aspects of the solubilization process of pyrene within a sodium dodecyl sulfate micelle were studied using molecular dynamics simulations. Our results showed that free pyrene as the fluorescence probe can be spontaneously solubilized into the micelle and prefers to be located in the hydrophobic core region. As the local concentration of pyrene increased, two molecular probes could enter into the core hydrophobic region and the excited dimer of pyrene molecules was formed, showing a stacking mode of π-π conjugation. Since the π-π stacking interaction between the two pyrene molecules was very weak, formation of the excimer was a dynamic process with the two pyrene molecules alternately separating and associating with each other. In this case, the two pyrene molecules were found to be mainly distributed in the palisade layer of the micelle due to the balance between the weak π-π stacking interaction and the hydrophobic interaction of probe molecules with the surfactant tails.  相似文献   

3.
4.
An ultra-fast analysis of proteins, based on sodium dodecyl sulfate (SDS)-mediated gel electrophoresis was developed, in which protein molecular mass standards ranging from Mr 14 200 to 94 700 were separated within 3 min. A 50 μm diameter uncoated fused-silica capillary column and a high field strength are used. The effects of the SDS concentration in the separation gel buffer and in the sample buffer on the resolution of protein test mixture were studied. The influence of the heat treatment of the sample prior analysis is also discussed.  相似文献   

5.
The effective self-diffusion coefficients of ions in premicellar and micellar solutions of sodium dodecyl sulfate are measured by the NMR self-diffusion method at 40°C. The obtained regularities are explained using a proposed model that takes into account the possible surface diffusion of counterions bound with micelles. This effect is shown to markedly influence the charge transfer in micellar solutions. Based on the results obtained, the self-diffusion coefficients of bound Na+ counterions are estimated and the causes and ranges of their variations are indicated.  相似文献   

6.
7.
We report the synthesis of pentagonal- and hexagonal-shaped gold nanoparticles with controlled diameters ranging from 5 to 50 nm. These nanoparticles were prepared by a seeding growth approach. Sodium dodecyl sulfate (SDS) molecules served as the capping agent to restrict the particle size. In addition, the formation of highly faceted gold nanoparticles may be facilitated by the possibly ineffective capping interactions between the lamellar micellar structures formed by the SDS molecules and the gold nanoparticles. The crystal structure of the highly faceted particles was found to consist of mostly [111] surfaces as particle size increases, as revealed by both TEM and XRD results.  相似文献   

8.
The effect of sodium dodecyl sulfate (SDS) on protein loss was studied. Three kinds of human hair were tested by rubbing or immersion in water or immersion in SDS solution, at 25, 40 and 70 degrees C. Under friction, hair treated with SDS solution loses seven times more protein than in water, while by immersion, protein loss is roughly two times higher in SDS than in water. Protein loss increases at higher temperatures. Estimated activation energy values for protein loss by immersion are 69+/-22 kJ mol(-1) for blended brown hair; 40+/-12 kJ mol(-1) for blond hair (tip-end region) and 61+/-4 kJ mol(-1) for blond hair (root-end region) for samples treated in water, while 53+/-8, 7+/-5 and 32+/-8 kJ mol(-1) were the corresponding activation energy values for samples treated in 5% SDS solution. These values indicate that protein loss is mainly a diffusion-controlled process. The more damaged the hair, the lower the activation energy and the higher the protein loss. From these data, it can be estimated that daily care shampooing at room temperature will cause opacity and combing difficulties in 1 year and split ends after 3 years by removal of all cuticle layers.  相似文献   

9.
The influence of electrolyte and additives of organic acids and alcohols on the efficiency of the extraction of ovalbumin and casein into micellar phases of sodium dodecyl sulfate is studied. The optimal acidity and the conditions for the preconcentration of the proteins using low-temperature anion-active phases are found. Micellar extraction procedures for the extraction of proteins from fabrics, solid surface, and biological fluids are proposed.  相似文献   

10.
The anionic surfactant sodium n-dodecyl sulfate (SDS) plays a variety of roles with regard to protein conformation, depending on its concentration. SDS at low concentrations mostly induces the compaction of protein (folding). Examples of this include: the molten globule state of acid-unfolded cytochrome c, associated with enhancement of the exothermic enthalpy values of isothermal titration calorimetry and a reversible profile by differential scanning calorimetry; the enzyme activation and compaction of Aspergillus niger catalase, and relationship of calorimetric enthalpy (ΔHcal) to van’t Hoff enthalpy (ΔHVH), which proves the existence of intermolecular and intramolecular interaction during enzyme activation by SDS; the production of a new energetic domain for human apotransferrin and folded state for histone H1 by SDS. SDS at moderate concentrations below the critical micelle concentration (cmc) is a potent denaturant for protein in solution. Protein denaturation is a key method in thermodynamics and binding site analysis and can be used to enhance our understanding of the protein structure-function relationship. The interaction between protein and surfactant, such as SDS, at the cmc level is a complicated interaction, thermodynamically, that should bring about enthalpy correction through micellar dissociation and micelle dilution.  相似文献   

11.
Sodium dodecyl sulfate-high-performance liquid chromatographic (SDS-HPLC) techniques for screening profiles of bone non-collagenous proteins (NCP) are described and compared with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) techniques. NCPs were obtained from long bones of neonatal and mature rats by sequential extraction with 4 M guanidine hydrochloride (GdnHCl) and 0.25 M EDTA followed by desalting. Desalted extracts were subjected to SDS-PAGE and SDS-HPLC. The results of the two analyses were comparable. There were differences in NCP profiles between mature rats and pups and between the GdnHCl and EDTA extracts. The methods described can be used for qualitative comparison of treatments and as a basis for further study.  相似文献   

12.
The influence of solubilized solutes on the micellization and critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS) were investigated by means of capillary electrophoresis (CE). Three different structural types of test solutes, including chloropyridines. chlorophenols and cephalosporins with different binding strength to SDS micelles, were selected in this study. The variations of the effective electrophoretic mobility of these solutes as a function of SDS concentration in the premicellar and micellar regions were analyzed. Interestingly, the results indicate that, in the presence of these solubilized solutes, the micellization of SDS may occur over a range of SDS concentration, with the aggregate size increasing over this range. Depending on the nature of solubilized solutes and the extent of the interactions between solubilized solutes and SDS micelles, the CMC value of SDS may vary significantly. The incorporation of solubilized solutes into SDS micelles to form mixed micelles is proposed to interpret the migration behavior of solubilized solutes in CE.  相似文献   

13.
The phase equilibria of surfactant aqueous mixtures, hexadecyltrimethylammonium bromide and sodium dodecyl sulfate, have been studied by polarizing microscopy, quasielastic light scattering, conductivity, potentiometric, electrophoretic, and surface tension measurements. Adsorption at the air/solution interface, association and precipitation in bulk solution strongly depended on the molar ratio and the concentration of surfactants. Catanionic vesicles coexisted with crystalline catanionic salts in a broad concentration range. The relative proportions of crystallites and vesicles varied according to the concentration and the molar ratio of the surfactants. The solid crystalline phase was progressively converted to catanionic vesicles with increasing surfactant molar ratio. At the highest excess of one of the surfactants transition from catanionic vesicles to mixed micelles occurred. The formation and stability of different phases are discussed in terms of surfactant molecular packing constraints and electrostatic interactions in the headgroup region. Surfactant tail-length asymmetry and the change of electrostatic interactions in the headgroup region from attractive to repulsive are governing factors for the transition from planar to curved bilayers. Received: 9 June 1998 Accepted: 18 August 1998  相似文献   

14.
15.
A novel method for the on-column sample stacking of proteins is described. The strategy takes advantage of interactions between protein molecules and sodium dodecyl sulfate (SDS) monomers. A long plug of a protein sample (either acidic or basic) is injected into a capillary filled with a background electrolyte (BGE) containing SDS. When a potential is applied, the proteins interact with SDS monomers in the BGE to form protein-SDS complexes that migrate more slowly than the corresponding uncomplexed protein, resulting in protein stacking. Both acidic and basic proteins migrate at an almost identical electrophoretic velocity after stacking, which indicates that the protein-SDS complexes formed in the BGE zone have a similar charge/mass ratio. The mechanism of stacking was investigated using a sample consisting of a basic protein, lysozyme, and a small molecule, methylene blue. The findings clearly show that two interactions with SDS occur, a stepwise binding interaction between protein molecules and SDS monomers and an interaction in which the small molecules enter into micelles formed by SDS molecules. The method was also applied to the detection of a protein labeled with a fluorescent labeling reagent at trace levels. The labeled protein was detected even under labeling conditions where the labeling efficiency was too low to detect by short-plug injection.  相似文献   

16.
Conductometric titration of poly(N-isopropylacrylamide) (polyNIPAM) with sodium dodecyl sulfate (SDS) gave two apparent transitions labeled C1 and C2. The C1 transition was independent of polyNIPAM concentration in the 0.05–0.3 wt % range, whereas C2 was proportional to the polymer concentration. C1 corresponded to the onset of binding of surfactant with polymer. Arguments based on a simple mass action model for micellization are presented to show that C2, the second transition, is not due to any simple explanation such as being the point above which only free micelles are formed with surfactant addition. The cloud point of polyNIPAM increased with the amount of bound surfactant. This was attributed to electrostatic contribution of bound sulfate groups to the increased solubility of polyNIPAM. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Ion flotation of rare-earth metals with sodium dodecyl sulfate and the effect of chloride ions on this process were studied. Values of the distribution coefficients were obtained.  相似文献   

18.
A series of sodium methacrylate and poly(ethylene glycol) (PEG) comb copolymers (MAA/PEG) with approximate PEG chain lengths of 7, 11, and 22 ethylene oxide units were synthesized by free radical polymerization. Their weight-average molecular mass was found to be approximately 66 000. A commercial sample of a PEG comb polymer with an acrylic backbone was also used in the studies (Sokalan HP 80). The interaction of the MAA/PEG comb polymers and pure sodium methacrylate (SPMA) with sodium dodecyl sulfate (SDS) was studied by ESR spectroscopy using 5-doxyl stearic acid (5-DSA) spin probe and by conductivity measurements. Surfactant aggregation in water occurred at SDS concentrations lower than the surfactant critical micelle concentration (cmc) and depended on the polymer concentration. The observations have been attributed to changes in the effective ionic strength of the systems due to the polymer itself, and it has been concluded that there is no interaction between the MAA/PEG comb copolymers or SPMA and SDS. This has been confirmed by the fact that the decrease in surfactant aggregation concentration is similar in magnitude to the decrease observed on adding NaCl when counterion ion condensation effects are taken into account. It is apparent that the electrostatic repulsions between the surfactant molecules and the methacrylate backbone of the MAA/PEG comb copolymers inhibit association of SDS with the PEG side chains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号