首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Microwave spectra of ethylsilane and its three deuterated species in vibrationally excited states have been measured. A least-squares analysis of the observed frequencies gave rotational constants and three of the quartic centrifugal distortion constants. The barriers to the internal rotation of both the methyl and silyl groups and the coefficients of the potential cross terms were solved from splittings of the multiplets.The averages of CH3 and SiH3 barriers were determined to be 2634±16 and 1992±21 cal/mol and the potential cross terms, V12 and V12, were estimated to be −55 and −111 cal/mol, respectively, for the four species.  相似文献   

2.
The rotational spectra of the v6 = 1 and v6 = 2 torsional states of CH3C35Cl3 have been measured in the millimeterwave range and accurate spectroscopic constants have been determined. The equilibrium structure, the torsional frequency and the barrier to internal rotation have been calculated ab initio. These results are shown to be compatible with the absence of splittings in the rotational spectra.  相似文献   

3.
The jet-cooled Fourier-transform microwave spectrum of N,N-dimethylacetamide was recorded in the region of 12-24 GHz, and was analyzed to determine rotational constants and nuclear quadrupole coupling constants. Coriolis-like coupling parameters characterizing interaction between internal rotation of methyl groups and the overall rotation were also determined from internal-rotation tunneling splittings of the rotational transitions. The Coriolis-like coupling parameters permitted determination of the barrier heights to internal rotation of the three methyl groups, which were found to be 677, 237, and 183 cm−1 for the C-methyl top, the trans-N-methyl top and the cis-N-methyl top, respectively.  相似文献   

4.
This sixth of a series of publications on the high-resolution rotation-vibration spectra of sulfur trioxide reports the results of a systematic study of the ν3 and 2ν3 infrared bands of the four symmetric top isotopomers 32S16O3, 32S18O3, 34S16O3, and 34S18O3. An internal coupling between the l=0(A1) and l=2(E) levels of the 2ν3 states was observed. This small perturbation results in a level crossing between |kl|=9 and 12, in consequence of which the band origins of the A1,l=0 “ghost” states could be determined to a high degree of accuracy. Ground and upper state rotational constants as well as vibrational anharmonicity constants are reported. The constants for the center-of-mass substituted species 32S16O3 and 34S16O3 vary only slightly, as do the constants for the 32S18O3, 34S18O3 pair. The S-O bond lengths for the vibrational ground states of the species 32S16O3, 34S16O3, 32S18O3, and 34S18O3 are, respectively, 141.981 99(1), 141.979 38(6), 141.972 78(8), and 141.969 93(8) pm, where the uncertainties, given in parentheses, are two standard deviations and refer to the last digits of the associated quantity.  相似文献   

5.
The rotational spectra of six excited vibrational states of dimethylallene were measured and assigned to the corresponding vibrational levels, and for three more excited state spectra at least the rotational constants could be determined. Between the two lowest excited levels of symmetry species b2 and b1 of group C2v a strong a-type Coriolis coupling was found to exist. The evaluation of the resulting perturbation by a diagonalization of the energy matrix yielded ζ(a) = 0.36 and a precise value for the vibrational energy difference 48.761 GHz (1.6 cm?1). The state b2 is believed to be the first excited torsional substate (01, 10)1 of methyl internal rotation, and the rotational transitions of this state as well as those of the strongly coupled state b1 presented very irregular multiplet splittings. On the other hand, the splittings of the next-higher excited state of species a2 which could be identified as the partner torsional substate (01, 10)2, followed the regular pattern, yielding an internal rotation barrier V3 (2079 cal/mole) not unlike that derived earlier from ground state splittings.  相似文献   

6.
The ground state millimeter-wave spectra of CH3NCH2 and CD3NCD2 have been measured. The rotational constants, centrifugal distortion constants, and barrier hindering internal rotation of the methyl group have been determined for both species. For the parent species Iα and ?(i,a) were also obtained, and for the perdeuteriated species the quadrupole coupling constants of 14N were determined.  相似文献   

7.
The microwave rotational spectra of five further isotopic species of toluene have been measured. Spectra characteristic for the presence of a very small sixfold barrier potential V6 hindering the internal methyl rotation were observed. It is demonstrated that the sets of rotational constants obtained from the ground state spectra, A′ (frame alone), B, C, can be used for the determination of a (partial) substitution structure also in the case of off-axis substituted isotopes. Attempts to obtain a more complete r0-structure were less successful. Values of V6 were derived for all isotopes from spectra in excited states of internal rotation. A 15 percent reduction of V6 upon methyl deuteration was observed, just as in earlier, similar cases.  相似文献   

8.
Three spectra of D216O between 2170 and 3090 cm?1 have been recorded with a Fourier transform spectrometer having a resolution of about 5 × 10?3 cm?1. A careful analysis of the bands 2ν2, ν1, and ν3 has led to a largely extended and more precise set of rotational levels belonging to the vibrational states (000), (020), (100), and (001). From this set, we have then been able to determine improved rotational constants for the ground state (000) and precise vibrational energies, rotational and coupling constants for the three interacting states (020), (100), and (001). The Fermi-type interaction between (020) and (100) as well as the Coriolis-type interactions between (100) and (001) and between (020) and (001) have been explicitly taken into account. Many vibrorotational resonances were detected and are discussed.  相似文献   

9.
The rotational a-type spectra of isotopically enriched diazirine isotopomers, H212C14N15N and H212C15N2, have been recorded in the region between 8 and 300 GHZ; the latter isotopomer has been observed for the first time. Using Watson's A-reduced Hamiltonian, the rotational constants and the quartic and some sextic centrifugal distortion constants have been determined for the ground vibrational states.  相似文献   

10.
The rotational spectra of 12CD2F2 in the ν2, ν3, ν4, 2ν4, ν5, ν7, ν8, and ν9 states were observed and assigned. Weak Coriolis interactions between ν3 and ν7, ν3 and ν9, and ν5 and ν7 were analyzed using approximate expressions for the rotational energy levels. The resonance between the ν2 and the ν8 state was found much stronger, and an effective two-dimensional Hamiltonian with the Coriolis term in the off-diagonal block was set up to analyze the spectra. The effect of the Fermi resonance between ν3 and 2ν4 was found to be very small.The ground-state spectrum of 13CD2F2 was observed and the rotational constants and the centrifugal distortion constants were determined. The data on 12CD2F2 and 12CDHF2 were also improved very much in accuracy.The Coriolis coupling constants and the differences between two vibrational levels in resonance, which were determined by the analysis of the satellite spectra, are in good agreement with those obtained from vibrational spectra, except for the ν2 band center, which is revised to 1170.3 cm?1. The force constants were also checked using the centrifugal distortion constants of 12CD2F2, 13CD2F2, and 12CHDF2.  相似文献   

11.
The vibration-rotation bands ν1 + ν2 and ν2 + ν3 of ozone appearing in the 5.7 μm region have been recorded at a resolution of 0.019 cm?1 with a SISAM spectrometer. The rotational levels of the (110) and (011) vibrational states have been fitted using a Hamiltonian which takes into account the Coriolis interaction between these two states. The rotational and coupling constants deduced from this study have been used to calculate a list of the vibration-rotation lines which is of interest for high resolution studies of atmospheric spectra in the 1670–1890 cm?1 region.  相似文献   

12.
The millimeterwave rotational spectrum of o-chlorotoluene is investigated in the frequency region 150-250 GHz. Many rotational lines show splitting due to internal rotation of the methyl group. The analysis of the internal rotation splitting allows us to determine with precision the potential barrier to internal rotation of the methyl group. However, it is found that the moment of inertia of the methyl top is probably much smaller than usually assumed, which significantly affects the value of the barrier. Accurate centrifugal distortion constants are obtained for the ground states of 35Cl and 37Cl isotopologues as well as for an excited vibrational state.  相似文献   

13.
The microwave spectra of the two mono-13C isotopic forms of acetone are reported for the first time. Measurements were carried out from 11 to 25 GHz with a pulsed-beam Fourier-transform microwave spectrometer. Because overall rotation interacts with the internal rotations of the methyl groups, the spectra were analyzed with an effective rotational Hamiltonian for molecules with two periodic large-amplitude internal motions. In acetone-2-13C, the methyl groups are equivalent; in acetone-1-13C, they are not. The molecular structure has been re-examined by including rotational constant data on other isotopic forms reported previously. An equilibrium structure for acetone has been derived from the observed rotational constants and vibration-rotation constants calculated from ab initio force fields.  相似文献   

14.
Nine microwave ground-state spectra of seven isotopes of ortho-xylene have been measured between 9 and 29 GHz. From the rotational constants a partial substitution structure could be calculated. The dipole moment was determined from Stark-lobe shifts, μa = 0.640 ± 0.005 D. The high-J transitions were found split into multiplets due to the interaction of methyl top internal rotation with the overall molecular rotation; doublets through quintets with the correct nuclear spin weight dependence could be observed according to group-theoretical expectations. A weighted average, V3 = 1490 ± 50 cal/mole, was derived for the internal rotation barrier neglecting top-top coupling and presumably small, higher than threefold barrier terms. The methyl groups both stagger the bond between the two benzene carbon atoms which carry them.  相似文献   

15.
The rotational spectra of nine isotopomers of dimethyl diselenide, CH3SeSeCH3, have been measured with a molecular-beam Fourier transform microwave spectrometer. The spectra were complex due to the presence of many isotopomers in natural abundance and the splitting caused by the interactions with two methyl internal rotors. The spectra were assigned and fit to experimental precision to an effective rotational Hamiltonian for molecules with two periodic internal motions. The spectra of the symmetric isotopomers are consistent with a C2 equilibrium structure. The rotational constants were used to determine the rs structure of the C-Se-Se-C frame with the results r(SeSe)=2.306(3) Å, r(SeC)=1.954(6) Å, ?(CSeSe)=99.8(2)°, ?(CSeSeC)=85.2(1)°. A barrier to internal rotation of the methyl groups of 395 ± 2 cm−1 was derived from the internal rotation splittings.  相似文献   

16.
Rotational spectra have been observed for BiO produced in a DC discharge through a low pressure mixture of O2, Ar, and Bi vapor. Because of the highly non-thermal distribution of states, it has been possible to observe spectra arising from the X12Π1/2 level up to v = 9 and for the X22Π3/2 level up to v = 5 near 10 538 cm−1. Precise rotational and hyperfine parameters have been determined for the observed states. By using available near infrared (NIR) data in a merged fit, the 0-0 and 1-1 fine structure intervals have been more precisely determined. Although the quality of the fit is very good, the interpretation of the hyperfine constants is complicated by relativistic effects and the interaction of the X2 state with A14Π3/2 state. The magnetic and quadrupole coupling constants will be compared with those of the Bi atom and related molecules.  相似文献   

17.
The rotational spectra of αd1- and αd2-ortho-fluorotoluene in the ground state of the methyl group torsion have been measured. The evaluation of the spectra has been based on the theory for the internal rotation of an asymmetric internal top formulated earlier by several authors. The barrier potential being threefold symmetric (V3), each torsional level consists of three nondegenerate substates, designated as sy and ±asy. The sy-state is assigned to the conformation with the unique methyl hydrogen isotope within the molecular heavy-atom plane (sy-rotamer), while the ±asy-states belong to the respective out-of-plane conformation (asy-rotamer). In the torsional ground state the level spacing between the ±asy substates is very small and numerous accidental close degeneracies are present between the rotational level systems based on these torsional substates. The rotational levels involved are strongly perturbed by the coupling between molecular overall rotation and internal rotation. Large deviations from a rigid rotor spectrum and (+) ? (?) intersystem (“tunneling”) transitions are observed. The spectrum of the asy-rotamer can be well reproduced by a “two-dimensional” Hamiltonian containing 11 “rotational constants,” 9 of which are determined by a fit to the spectrum. Several are sufficiently barrier-dependent to derive V3. We obtain (in cal/mole) 567 ± 48 for αd1-ortho-fluorotoluene, 711 ± 40 for the αd2-isotope. The deviations from 649 cal/mole for the normal isotope are appreciable, probably indicating shortcomings of the semirigid model. The sy-rotamer presents a rigid rotor spectrum.  相似文献   

18.
The vibration-rotation spectra of 13C monosubstituted acetylene, 12C13CH2, have been recorded in the region between 450 and 3200 cm−1 with an effective resolution ranging from 0.004 to 0.006 cm−1. A total of about 5300 rovibrational transitions have been assigned to 53 bands involving the bending states up to vt=v4+v5=4, allowing the characterization of the ground state and of 30 vibrationally excited states. All the bands involving states up to vt=3 have been analyzed simultaneously by adopting a model Hamiltonian which takes into account the vibration and rotation l-type resonances. The derived spectroscopic parameters reproduce the transition wavenumbers with a RMS value of the order of the experimental uncertainty. Using the same model larger discrepancies between observed and calculated values have been obtained for transitions involving states with vt=4. These could be satisfactorily reproduced by only adopting, in addition to the previously determined parameters which were constrained in the analysis, a set of effective constants for each vibrational manifold.  相似文献   

19.
The millimeter wave rotational spectra of P35Cl3 have been recorded for the excited vibrational states v2 = 1 and v4 = 1. The analysis of the latter yields ξ44c = ?0.738(12) and resolves a dilemma in fitting the harmonic force field.  相似文献   

20.
The microwave spectra of CH2DCOOH and CHD2COOH have been studied by means of microwave-microwave double resonance. For the asy rotamers torsional splittings (5898 and 530 MHz, respectively) and effective rotational constants were determined in the ground state. Effective barrier parameters were provisionally estimated and used to predict excited-state spectra. Here significant interaction between sy and asy rotamers occurred, and a Hamiltonian based on an extension of the IAM method to the case of an asymmetric internal rotor was used to account for the spectra. A few direct sy-asy transitions were observed as well as spectra originating from the second excited torsional state. Effective potential energy coefficients, V1 through V6, were determined accurately; apart from V3 and V6, which are comparable to values in CH3COOH and CD3COOH, large V2 terms occur (28.5 cm?1 in CH2DCOOH and ?25.4 cm?1 in CHD2COOH). These terms provide localization in the ground state wave functions, and can be rationalized as arising from the zero-point energies of the other normal vibrations. Also determined were Fourier components of the rotational constants, which were in fair agreement with results from model calculations when geometry relaxation was included. After correction of the ground state inertial moments for effects of the torsion a consistent set of inertial moments was obtained for the various isotopic species, and a complete substitution structure could be determined. The HCH angles in the methyl group were found to differ by 2.7°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号