首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The detailed kinetics of the multistep mechanism of the Au(III) ion reduction into gold clusters have been investigated by radiation chemistry methods in 2-propanol. In particular, a discussion on the steady state radiolysis dose-dependence of the yields concludes to a comproportionation reaction of nascent gold atoms Au(0) with excess Au(III) ions into Au(II) and Au(I). This reaction should be achieved through Au(III) consumption before the coalescence of atoms Au(0) into gold clusters may occur. Then gold clusters catalyze the reduction of Au(I) by 2-propanol. It was also found that a long-lived Au(II) dimer, (Au(II))(2), was transiently formed according to the quantitative analysis of time-resolved absorbance signals obtained by pulse radiolysis. Then the disproportionation of Au(II) is intramolecular in the dimer instead of intermolecular, as usually reported. The yields, reaction rate constants, time-resolved spectra, and molar extinction coefficients are reported for the successive one-electron reduction steps, involving especially the transient species, such as Au(II), (Au(II))(2), and Au(I). The processes are discussed in comparison with other solvents and other metal ions.  相似文献   

2.
The reaction of Au(III) with phenothiazine has been studied and a reaction mechanism proposed. Optimal conditions for the reaction have been found and a new spectrophotometric method has been developed for determination of Au(III). The method is advantageous in its simplicity and reproducibility. Gold can be determined in the concentration range 2-20 mug/ml.  相似文献   

3.
Chen YD  Zhang LY  Qin YH  Chen ZN 《Inorganic chemistry》2005,44(18):6456-6462
Polynuclear heterovalent Au(III)-M(I) (M = Cu, Ag, Au) cluster complexes [Au(III)Cu(I)8(mu-dppm)3(tdt)5]+ (1), [Au(III)3Ag(I)8(mu-dppm)4(tdt)8]+ (2), and [Au(III)Au(I)4(mu-dppm)4(tdt)2]3+ (3) were prepared by reaction of [Au(III)(tdt)2]- (tdt = toluene-3,4-dithiolate) with 2 equiv of [M(I)2(dppm)2]2+ (dppm = bis(diphenylphosphino)methane). Complex 3 originates from incorporation of one [Au(III)(tdt)2]- with two [Au(I)2(dppm)2]2+ components through Au(III)-S-Au(I) linkages. Formation of complexes 1 and 2, however, involves rupture of metal-ligand bonds in the metal components and recombination between the ligands and the metal atoms. The Au(tdt)2 component connects to four M(I) atoms through Au(III)-S-M(I) linkages in syn and anti conformations in complexes 1 (M = Cu) and 3 (M = Au), respectively, but in both syn and anti conformations in complex 2 (M = Ag). The tdt ligand exhibits five types of bonding modes in complexes 1-3, chelating Au(III) or M(I) atoms as well as bridging Au(III)-M(I) or M(I)-M(I) atoms in different orientations. Although complexes 1 and 2 are nonemissive, Au(III)Au(I)(4) complex 3 shows room-temperature luminescence with emission maximum at 555 nm (tau(em) = 3.1 micros) in the solid state and at 570 nm (tau(em) = 1.5 micros) in acetonitrile solution.  相似文献   

4.
The effect of dodecanethiolate-protected metallic nanoclusters of gold (Au:SC12, 1), silver (Ag:SC12), palladium (Pd:SC12), and platinum (Pt:SC12) on the catalytic activity of Mn(TPP)Cl (TPP = tetraphenylporphinato) was investigated in styrene oxidation with iodosylbenzene. Among the four metal clusters, only Au:SC12 led to appreciable acceleration of the catalytic reaction. The major role of the Au cluster was to regenerate the active catalytic path involving Mn(III) and Mn(V) from the deactivated Mn(IV) species. The binary 1/Mn(TPP)Cl catalyst system showed an absorption spectrum characteristic of Mn(III)-porphyrin after reaction, whereas a catalytically ineffective Mn(IV) species was observed as the sole porphyrin species in the absence of the Au cluster or in the presence of Pd, Ag, and Pt clusters. Accordingly, the slow oxidation reaction with Mn(TPP)Cl was accelerated by the addition of Au:SC12, and complete conversion of Mn(IV) into Mn(III) was observed in the absorption spectrum. 1H NMR inspection of the reaction of Au:SC12 and iodosylbenzene revealed that the surface dodecyl groups were partially oxidized into dodecanal and eliminated from the cluster surface, thereby producing unprotected gold sites on the surface. A reactivation mechanism involving the reaction of the Mn-porphyrin and the oxidant activated on the gold surface is proposed.  相似文献   

5.
An imidazoline group-containing chelating fiber was prepared by means of the reaction of nitrile groups with ethylenediamine in an hydrazine-modified polyacrylonitrile fiber. The adsorption properties of the chelating fiber for Au(III), Pd(II), Pt(IV), Ir(IV), Os(IV), Rh(III) and Ru(IV) ions, such as binding capacity, distribution coefficient, sorptive rate and quantitative elution of Au(III), Pd(II) and Pt(IV) ions were investigated. The imidazoline group-containing chelating fiber possessed high binding capacities and good adsorption kinetic properties, exhibited high affinity for noble metals in 0.1-1.0 mol/L HCl and could be efficiently re-used. After the separation of trace Au(III), Pd(II) and Pt(IV) ions from a matrix using the chelating fiber, these ions could be determined by ICP-AES with satisfactory results, and the relative standard deviation for Au(III), Pd(II) and Pt(IV) ions was less than 6%.  相似文献   

6.
本文研究了An(Ⅲ)与 3,3′,5.5′-四甲基联苯胺(TMB)的显色反应,在0.02mol/L盐酸介质中,TMB于波长450nm处有最大吸收,摩尔吸光系数为1.03×10~5L·mol~(-1).cm~(-1).25ml溶液中0~40μg金(Ⅲ)符合比尔定律,本方法已用于粗铜中微量金的测定.  相似文献   

7.
An imidazoline group-containing chelating fiber was prepared by means of the reaction of nitrile groups with ethylenediamine in an hydrazine-modified polyacrylonitrile fiber. The adsorption properties of the chelating fiber for Au(III), Pd(II), Pt(IV), Ir(IV), Os(IV), Rh(III) and Ru(IV) ions, such as binding capacity, distribution coefficient, sorptive rate and quantitative elution of Au(III), Pd(II) and Pt(IV) ions were investigated. The imidazoline group-containing chelating fiber possessed high binding capacities and good adsorption kinetic properties, exhibited high affinity for noble metals in 0.1–1.0 mol/L HCl and could be efficiently re-used. After the separation of trace Au(III), Pd(II) and Pt(IV) ions from a matrix using the chelating fiber, these ions could be determined by ICP-AES with satisfactory results, and the relative standard deviation for Au(III), Pd(II) and Pt(IV) ions was less than 6%. Received: 5 July 1999 / Revised: 4 October 1999 / Accepted: 4 October 1999  相似文献   

8.
The three‐component polyaddition of diamines, carbon disulfide (CS2), and diacrylates in water was successfully achieved without the use of a surfactant or catalyst. Appropriate reaction conditions (i.e., reaction temperature, reaction time, and CS2 feed) enabled the polyaddition of 1,3‐di‐4‐piperidylpropane ( 1a ), CS2, and 1,6‐hexanediol diacrylate ( 2a ) to afford the corresponding poly(dithiourethane‐amine) containing 83% of dithiourethane units in 84% yield. Polyaddition of other monomers also proceeded under the optimum conditions to afford various poly(dithiourethane‐amine)s. Unsuccessful results for polyaddition in organic solvents such as toluene, tetrahydrofuran, and N,N‐dimethylformamide revealed that the polyaddition is accelerated in water. The obtained poly(dithiourethane‐amine)s adsorbed Au (III) efficiently under acidic conditions, due to the strong interaction of the thiocarbonyl sulfur in the dithiourethane unit with Au (III). The poly(dithiourethane‐amine)s also showed selective adsorption for Au (III) from a mixture of metal ions [Au (III), Fe (III), Mn (II), and Zn (II)], which indicates their potential utilization for the collection of gold. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 845–851, 2010  相似文献   

9.
Three types of PEGylated polyamidoamine (PAMAM) dendrons were synthesized through PEGylation of primary amines at the periphery of second, third, and fourth generation dendrons. Au(III) precursors and the synthesized PEGylated PAMAM dendrons were mixed at various pHs to evaluate the effect of pH on gold nanoparticle (Au NP) synthesis by monitoring the change in surface plasmon resonance. The Au NP synthesis reaction was controlled by pH through the balance between protonated and deprotonated tertiary amines and the reactivity of Au(III) precursors. By using PEGylated PAMAM dendrons with higher generation, the obtained Au NPs had narrow size distribution with small average size because of the limitation of intermolecular space among PEGylated PAMAM dendrons for the growth to Au NP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1391–1398, 2010  相似文献   

10.
环硫氯丙烷的均聚物或环硫氯丙烷与环氧氯丙烷的共聚物,在少量二乙烯三胺存在下制得预交联聚合物,将后者与硫氰化钾反应,制得两种侧链带有硫氰酸根的新型螯合树脂。它们对贵金属具有优良的吸附性能和高的吸附选择性。通过X射线光电予能谱初步探讨了树脂对金属离子的螯合作用  相似文献   

11.
The successful realization of gold-catalyzed chain-walking reactions, facilitated by ligand-enabled Au(I)/Au(III) redox catalysis, has been reported for the first time. This breakthrough has led to the development of gold-catalyzed annulation reaction of alkenes with iodoarenes by leveraging the interplay of chain-walking and π-activation reactivity mode. The reaction mechanism has been elucidated through comprehensive experimental and computational studies.  相似文献   

12.
Chung NH  Tabata M 《Talanta》2002,58(5):927-933
The mixture of 2-propanol with water has been employed to extract Au(III) along with other precious metals such as Pd(II) and Pt(IV) by using NaCl in the concentration range of 2.5-4.0 mol dm(-3). Upon the addition of NaCl within this concentration range (2.5-4.0 mol dm(-3)) phase separation was attained. Gold(III) in aqueous phase was quantitatively extracted into the 2-propanol phase at 2.5-4.0 mol dm(-3) of NaCl. The extraction of the other metals such as Pd(II) and Pt(IV) was much lower than for that of Au(III). Thus a maximal selective separation of Au(III) from these metals could be attained using the mixture of 2-propanol with water. A reaction mechanism involving the ion-pair of Na(+) and [AuCl(4)](-) has been proposed to explain this extraction.  相似文献   

13.
Mori S  Osuka A 《Inorganic chemistry》2008,47(10):3937-3939
Au(III)Cu(III) and Au(III)Rh(I) heterobismetal complexes of meso-aryl-substituted [26]hexaphyrin were rationally prepared from a monometal Au(III) complex. The Au(III)Cu(III) complex is an aromatic molecule with a rectangular shape, while Au(III)Rh(I) complexes are out-of-plane macrocycles, being either aromatic or antiaromatic depending upon the number of conjugated pi electrons. The 26pi Au(III)Rh(I) complex was converted into an aromatic and planar 26pi Au(III)Rh(III) complex via double C-H bond activation upon refluxing in pyridine.  相似文献   

14.
Reactions of [Au(PPh3)Cl], (Bu4N)[AuCl4] and the organometallic gold complex [Au(damp-C1,N)Cl2] (damp- = 2-(N,N-dimethylaminomethyl)phenyl) with the potentially tri- and tetradentate proligands PhP(C6H3-SH-2-R-3)2 (H2L1a, R = SiMe3; H2L1b, R = H) and P(C6H4-SH-2)3 (H3L2) result in the formation of mono- or dinuclear gold complexes depending on the precursor used. Monomeric complexes of the type [AuL1Cl] are formed upon the reaction with [Au(damp-C1,N)Cl2], but small amounts of dinuclear [AuL1]2 complexes with gold in two different oxidation states, +1 and +3, have been isolated as side-products. The dinuclear compounds are obtained in better yields from [AuCl4]-. A dinuclear complex having two Au(III) centers can be isolated from the reaction of [Au(PPh3)Cl] with H3L2, whereas from the reaction with H2L1b the mononuclear [Au(Ph3P)HL1b] is obtained, which contains a three-coordinate gold atom. Comparatively short gold-gold distances have been found in the dinuclear complexes (2.978(2) and 3.434(1) A). They are indicative of weak gold-gold interactions, which is unusual for gold(III).  相似文献   

15.
Au(III)-Schiff base complexes are active hydrogenation catalysts, giving turnover frequencies similar to those of the corresponding complexes of Pd(II), which has the same d8 electronic structure as Au(III). The mechanism of the reaction has been studied in detail by a combination of kinetic experiments and theoretical calculations. It is predicted and tested that the nature of the solvent plays a critical role for the heterolytic cleavage of H2 (controlling step). Taking this into account, and by properly selecting the nature of solid supports (polarity and proton-donating ability), it was possible to strongly increase the activity of the homogeneous Au(III) and Pd(II) catalysts by grafting them onto the surface.  相似文献   

16.
Hypophosphite ion is oxidised by Au(III) in aqueous hydrochloric acid to give phosphorus acid and Au(I). The kinetics of the reaction has been studied spectrophotometrically in the UV region at different temperatures. The oxidation of hypophosphorous acid is first order with respect to both Au(III) and substrate. Hydrogen ion has no effect on the rate in acid media (0.15–1.0)M. The energy and entropy of activations are 128 ± 3.0kJ mol?1 and 135.8 ± 6.5 JK?1 mol?1 respectively. The results are interpreted in terms of the probable formation of intermediate Au(lI).  相似文献   

17.
The gold(I) selenolate compound [Au(2)(SePh)(2)(mu-dppf)] (dppf = 1,1'-bis(diphenylphosphino)ferrocene) has been prepared by reaction of [Au(2)Cl(2)(mu-dppf)] with PhSeSiMe(3) in a molar ratio 1:2. This complex reacts with gold(I) or gold(III) derivatives to give polynuclear gold(I)-gold(I) or gold(I)-gold(III) complexes of the type [Au(4)(mu-SePh)(2)(PPh(3))(2)(mu-dppf)](OTf)(2), [Au(3)(C(6)F(5))(3)(mu-SePh)(2)(mu-dppf)], or [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)], with bridging selenolate ligands. The reaction of [Au(2)(SePh)(2)(mu-dppf)] with 1 equiv of AgOTf leads to the formation of the insoluble Ag(SePh) and the compound [Au(2)(mu-SePh)(mu-dppf)]OTf. The complexes [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)] and [Au(2)(mu-SePh)(mu-dppf)]OTf (two different solvates) have been characterized by X-ray diffraction studies and show the presence of weak gold(I)-gold(III) interactions in the former and intra- and intermolecular gold(I)-gold(I) inter-actions in the later.  相似文献   

18.
《Polyhedron》1999,18(5):749-754
Dichloro [2- (NN-dimethylaminomethyl)phenyl-C 1N]gold(III) [Au (damp–C 1N)Cl2]reacts with diphenylthiocarbazone PhNHNHC(S)NNPhunder formation of the cationic species [Au (Hdamp–C 1){PhNHNC (S)NNPh}Cl]Cl The reaction goes along with cleavage of the Au–N bond and protonation of the dimethylamino group Diphenylthiocarbazonate coordinates singly deprotonated as N S-chelate There is no evidence for the formation of Au (I) species during this reaction.  相似文献   

19.
Silica gel functionalized by reaction with γ-aminopropyltriethoxysilane was prepared and its adsorption characteirstics for metal ions were studied. This material selectively removes the Au(III), Pt(IV) and Pd(II) chloro complex ions from sample solutions containing Fe(III) and Cu(II) ions by ion exchange.  相似文献   

20.
The gold(I) thiolate complexes [Au(2-SC6H4NH2)(PPh3)] (1), [PPN][Au(2-SC6H4NH2)2] (2) (PPN = PPh3=N=PPh3), and [{Au(2-SC6H4NH2)}2(mu-dppm)] (3) (dppm = PPh2CH2PPh2) have been prepared by reaction of acetylacetonato gold(I) precursors with 2-aminobenzenethiol in the appropriate molar ratio. All products are intensely photoluminescent at 77 K. The molecular structure of the dinuclear derivative 3 displays a gold-gold intramolecular contact of 3.1346(4) A. Further reaction with the organometallic gold(III) complex [Au(C6F5)3(tht)] affords dinuclear or tetranuclear mixed gold(I)-gold(III) derivatives with a thiolate bridge, namely, [(AuPPh3){Au(C6F5)3}(mu2-2-SC6H4NH2)] (4) and [(C6F5)3Au(mu2-2-SC6H4NH2)(AudppmAu)(mu2-2-SC(6)H4NH2)Au(C6F5)3] (5). X-ray diffraction studies of the latter show a shortening of the intramolecular gold(I)-gold(I) contact [2.9353(7) or 2.9332(7) A for a second independent molecule], and short gold(I)-gold(III) distances of 3.2812(7) and 3.3822(7) A [or 3.2923(7) and 3.4052(7) A] are also displayed. Despite the gold-gold interactions, the mixed derivatives are nonemissive compounds. Therefore, the complexes were studied by DFT methods. The HOMOs and LUMOs for gold(I) derivatives 1 and 3 are mainly centered on the thiolate and phosphine (or the second thiolate for complex 2), respectively, with some gold contributions, whereas the LUMO for derivative 4 is more centered on the gold(III) fragment. TD-DFT results show a good agreement with the experimental UV-vis absorption and excitation spectra. The excitations can be assigned as a S --> Au-P charge transfer with some mixture of LLCT for derivative 1, an LLCT mixed with ILCT for derivative 2, and a S --> Au...Au-P charge transfer with LLCT and MC for derivative 3. An LMCT (thiolate --> Au(III) mixed with thiolate --> Au-P) excitation was found for derivative 4. The differing nature of the excited states [participation of the gold(III) fragment and the small contribution of sulfur] is proposed to be responsible for quenching the luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号