首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study has prepared highly conducting polymer electrolyte films using solution cast technique with poly(vinylidene fluoride-co-hexafluoropropylene) PVDF-HFP, mixture of ethylene carbonate (EC), and propylene carbonate (PC) as plasticizer and latex of Calotropis gigantea (CGL) as an ionic source. In this study, four films are prepared using PVDF-HFP:CGL in ratio 1:1 with the increasing concentration of EC+PC as 1, 2, 3, and 4 M named as 1:1:1, 1:1:2, 1:1:3, 1:1:4. The prepared polymer electrolyte is examined by polarized optical microscopy (POM), elemental dispersive X-ray technique (EDX), and complex impedance spectroscopy. EDX and POM are studied for the surface morphology of all prepared samples and to investigate the porous nature of films. The enhancement in ionic conductivity occurs due to CGL and increasing amount of EC-PC. Conductivity of highest composition (1:1:4) polymer electrolyte film is found to be ≈10−3 S cm−1. The optimized polymer electrolyte film is considered as a promising candidate for application in supercapacitors.  相似文献   

2.
Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.  相似文献   

3.
Over the past two decades, considerable efforts have been devoted to the development of conjugated polymeric materials for electronic applications due to the tunability of their properties through variation of their chemical structure. The LB technique is one of the most effective and precise methods for controlling the organization and thereby the properties of polymer films at the nanoscale for device fabrication. A detailed study was performed on the Langmuir-Schaefer (LS) monolayer and Langmuir-Blodgett-Kuhn (LBK) multilayer formation of newly designed conjugated poly(p-phenylene)s (C(n)PPPOH), incorporated with alkoxy groups with different chain lengths (C(6)H(13)O-, C(12)H(25)O-, and C(18)H(37)O-) and hydroxyl groups on the polymer backbone. The monolayer formed at the air-water interface was characterized using surface pressure-area isotherms, including hysteresis measurements. The films were then transferred to different hydrophilic solid substrates and analyzed using surface plasmon resonance spectroscopy, UV-vis spectroscopy, fluorescence spectroscopy, and AFM measurements. The results showed that the polymer with a short alkoxy chain (C(6)PPPOH) forms uniform monolayers at the air-water interface and can be transferred as multilayer films compared to C(12)PPPOH and C(18)PPPOH. The observed film thicknesses measured by SPR and AFM studies were similar to the theoretical value obtained in the case of C(6)PPPOH, whereas this was not the case with the other two polymers. The present study shows that the polymer C(n)PPPOH with short alkoxy chain can be transferred onto different solid substrates for device fabrication with molecular level control.  相似文献   

4.
The electrochemistry and electrogenerated chemiluminescence (ECL) of two linear, stereoregular, and structurally defined PPV derivatives, poly[distyrylbenzene-b-(ethylene oxide)]s, with respective 12 and 16 of ethylene oxide repeat units in the backbone, abbreviated as DE-1 and DE-2, have been studied on glassy carbon and Pt electrodes in CH2Cl2 and CH3CN containing 0.10 M tetra-n-butylammonium perchlorate (TBAP). In CH2Cl2, a one-electron transfer, reversible oxidation at approximately 0.75 V vs Ag/Ag+ (10 mM AgNO3 in CH3CN) was observed for both polymers. Porous polymer films were electrochemically formed on the electrode with multiple cyclic potential scanning. Cast films of DE-1 and DE-2 on the electrode prepared from 1.0 mM of the corresponding CH2Cl2 solutions were used for studies in CH3CN containing 0.10 M TBAP due to their limited solubility in the solvent. A film-type of oxidation was found at approximately 0.80 V vs Ag/Ag+ in CH3CN when a scan rate of less than 1 V/s was used. The soluble oxidation product can be captured and reduced and then reoxidized in solution-phase at the electrode at a relatively high scan rate of, e.g., 2 V/s. ECL responses with a maximum emission at approximately 1.10 V vs Ag/Ag+ were obtained with the cast films in CH3CN (0.10 M TBAP) in the presence of 43 mM tri-n-propylamine (TPrA) after both TPrA and film were oxidized. The ECL is believed to be resulted from the interaction between the oxidized polymer species and the strong reducing TPrA free radical (TPrA*) generated after the deprotonation of TPrA*+ cation species.  相似文献   

5.
Ultrathin films of a cross-linked and chemically distinct conjugated poly(p-phenylene) network via electropolymerization are described. The amphiphilic network precursor was synthesized by incorporating the alkoxy carbazole group (-O(CH2)5Cb) to a poly(p-phenylene) (C6PPPOH) backbone. In order to investigate the combined thin film electrochemical and photophysical properties of poly(p-phenylene)s and polycarbazole conjugated polymers, C6PPPC5Cb was deposited on substrates using the Langmuir Blodgett Kuhn (LBK) method. The monolayer isotherm of the polymer, C6PPPC5Cb, showed a liquid expanded region slightly different from the parent polymer C6PPPOH. Multilayers (up to 30 layers) were transferred to different substrates such as quartz, gold coated LaSFN9 and ITO substrates for analysis. For conversion to a conjugated polymer network (CPN) film, the electroactive carbazole group was electropolymerized using cyclic voltammetry (CV) resulting in polycarbazole linking units. The differences in the film properties and corresponding changes in the electrochemical behavior indicate the importance of film thickness and electron/ion transport process in cross linked network films. From the electrochemical studies, the scan rate was found to have a considerable effect on electropolymerization with higher oxidation and reduction peak values found for the rigid network polymer compared to the uncrosslinked polymers.  相似文献   

6.
Polyfurans have never been established as useful conjugated polymers, as previously they were considered to be inherently unstable and poorly conductive. Here, we show the preparation of stable and conducting polyfuran films by electropolymerization of a series of oligofurans of different chain lengths substituted with alkyl groups. The polyfuran films show good conductivity in the order of 1 S cm–1, good environmental and electrochemical stabilities, very smooth morphologies (roughness 1–5 nm), long effective conjugation lengths, well-defined spectroelectrochemistry and electro-optical switching (in the Vis-NIR region), and have optical band-gaps in the range of 2.2–2.3 eV. A low oxidation potential needed for polymerization of oligofurans (compared to furan) is a key factor in achievement of improved properties of polyfurans reported in this work. DFT calculations and experiments show that polyfurans are much more rigid than polythiophenes, and alkyl substitution does not disturb backbone planarity and conjugation. The obtained properties of polyfuran films are similar or superior to the properties of electrochemically prepared poly(oligothiophene)s under similar conditions.  相似文献   

7.
Electrically conducting 3-alkylthiophene polymers with pentyl, octyl, dodecyl, and hexadecyl alkyl groups were prepared. Iodine, trifluoroacetic acid, and dodecylbenzenesulfonic acid were used as dopants of the polymer backbone. The conductivities of the doped films were in the range 10?6 to 10?1S/cm. Applications of the prepared materials in electronics and optoelectronics were examined.  相似文献   

8.
本征型导电高分子抗静电剂是目前发现的使用效果最好的抗静电剂之一.本文简要综述了本征型导电高分子抗静电剂的工作原理、特点、国内外发展现状及发展趋势,其中重点介绍了聚(3,4 二氧乙基噻吩)/聚对苯乙烯磺酸,以及它在感光材料中作为抗静电剂显示的重要作用.  相似文献   

9.
Interchain interaction, i.e., pi-pi stacking, can benefit the carrier transport in conjugated regio-regular poly(3-hexylthiophene) (P3HT) thin films. However, the existence of the insulating side hexyl chains in the surface region may be detrimental to the charge transfer between the polymer backbone and overlayer molecules. The control of the molecular orientation in the surface region is expected to alter the distribution of the pi electron density at the surface to solve such problems, which can be achieved by controlling the solvent removal rate during solidification. The evidence that the pi-electron density distribution at the outermost surface can be controlled is demonstrated by the investigation using the powerful combination of near edge X-ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, and the most surface-sensitive technique: Penning ionization electron spectroscopy. From the spectroscopic studies, it can be deduced that the slower removal rate of the solvent makes the polymer chains even at the surface have sufficient time to adopt a more nearly equilibrium structure with edge-on conformation. Thus, the side hexyl chains extend outside the surface, which buries the pi-electron density contributed from the polymer backbone. Contrarily, the quench of obtaining a thermo-equilibrium structure in the surface region due to the faster removal of the solvent residual can lead to the surface chain conformation without persisting to the strong bulk orientation preference. Therefore, the face-on conformation of the polymer chain at the surface of thin films coated with high spin coating speed facilitate the electron density of the polymer backbone exposed outside the surface. Finally, thickness dependence of the surface electronic structure of P3HT thin films is also discussed.  相似文献   

10.
陶荟春  朱豫  由吉春 《应用化学》2016,33(8):894-899
采用温控原子力显微镜方法,在线跟踪了远离临界组成聚甲基丙烯酸甲酯/苯乙烯-丙烯腈无规共聚物(PMMA/SAN)共混薄膜的表面相分离行为,并研究了其动力学规律。 结果表明,在SAN含量为70%的样品中观察到了表面相分离行为,其过程可分为早期、中期和晚期3个阶段,分别对应特征化的标度指数:早期结果验证了Cahn线性理论,即标度指数为零;中期相行为主要受“碰撞-扩散”机理控制,因此表现出1/3的标度指数;在相分离后期,流体动力学主导了相区的生长和归并行为,此时标度指数变为2/3。 我们的研究结果对于深刻理解高分子相行为具有积极作用,并将对高分子薄膜加工提供必要的指导。  相似文献   

11.
Layer by layer films of protein and redox polymer were constructed and used to simultaneously analyze ascorbic acid and hydrogen peroxide. The films were made using hemoglobin and poly[4-vinylpyridine Os(bipyridine)(2)Cl]-co-ethylamine (Pos-Ea). The film growth was monitored using cyclic voltammetry, quartz crystal microbalance (QCM) and atomic force microscopy (AFM). Reversible pairs of oxidation-reduction peaks were observed using cyclic voltammetry corresponding to the Os(II)/Os(III) from redox polymer and HbFe(III)/HbFe(II) redox couples at 0.35 and -0.25 V vs. Ag/AgCl, respectively. The two redox centers were independent of each other. This enabled the simultaneous and independent determination of ascorbic acid and hydrogen. Peak currents were linearly related to concentration for both analytes in a mixture. The linear range of ascorbic acid was 0 - 1 mM (R(2) = 0.9996, n = 5) at scan rate of 50 mV s(-1) (sensitivity 3.5 microA/mM) while hydrogen peroxide linear range was 1.0 - 10.0 microM (R(2) = 0.991, n = 6) with sensitivity of 1.85 microA/microM.  相似文献   

12.
This work describes the promising activity of silver nanoparticles on the surface of a poly(2-amino diphenylamine) modified carbon paste electrode (CPE) towards formaldehyde oxidation. Electrodeposition of the conducting polymer film on the CPE was carried out using consecutive cyclic voltammetry in an aqueous solution of 2-aminodiphenylamine and HCl. Nitrogen groups in the polymer backbone had a Ag ion accumulating effect, allowing Ag nanoparticles to be electrochemically deposited on the surface of the electrode. The electrochemical and morphological characteristics of the modified electrode were investigated. The electro-oxidation of formaldehyde on the surface of electrode was studied using cyclic voltammetry and chronoamperometry in aqueous solution of 0.1 mol/L NaOH. The electro-oxidation onset potential was found to be around -0.4 V, which is unique in the literature. The effect of different concentrations of formaldehyde on the electrocatalytic activity of the modified electrode was investigated. Finally, the diffusion coefficient of formaldehyde in alkaline media was calculated to be 0.47 × 10-6 cm2/s using chronoamperometry.  相似文献   

13.
Summary: Polypyrrole (PPy), polyaniline (PANI), and poly(ethylenedioxythiophene) (PEDOT) aqueous dispersions were prepared by polymerizing the corresponding monomer in the presence of a polymeric ionic liquid (PIL), poly(1‐vinyl‐3‐ethylimidazolium bromide). By addition of bispentafluoroethanesulfonimide lithium salt, the PIL stabilizer becomes hydrophobic and precipitates in water and traps the conducting polymer microparticles inside. The dispersion of the recovered powders in organic solvents leads to organic conducting dispersions. After casting the organic dispersions, hydrophobic films with electrical conductivity values as high as 0.1 S · cm−1 were obtained.

A new synthetic route to new organic dispersions.  相似文献   


14.
This paper reports on the preparation of poly(methyl methacrylate) (PMMA), poly(n-butyl acrylate) (PBA), and polystyrene (PS) brushes at the surface of conducting materials that were modified by the electrochemical reduction of a brominated aryl diazonium salt BF4-, +N2-C6H4-CH(CH3)-Br (D1). The grafted organic species -C6H4-CH(CH3)-Br was found to be very effective in initiating atom transfer radical polymerization (ATRP) of vinyl monomers. This novel approach combining diazonium salts and ATRP allowed PMMA, PBA, and PS brushes to be grown from the surface of iron electrodes. The polymer films were characterized in terms of their chemical structure by infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy studies indicated that the polymer brushes are densely packed. Contact angle measurements of water drops on PS and PMMA brushes were 88.1 +/- 2.0 and 70.3 +/- 2.1 degrees, respectively, which is consistent with the published wettability data for the corresponding polymer sheets.  相似文献   

15.
Atta NF  Galal A  Mark HB  Yu T  Bishop PL 《Talanta》1998,47(4):987-999
A new potentiometric sensor electrode for sulfide based on conducting polymer films is introduced. The electrode is formed by electrochemically depositing a film of poly(3-methylthiophene) and poly(dibenzo-18-crown-6) onto an alloy substrate. Different methods were used for the electrode preparations. The alloy used has a low melting point, which allowed its use for manufacturing a microsize version of this electrode. The electrode response is stable for 3 days. The working temperature range for this electrode is between 10 and 40 degrees C. The linear dynamic range is 1.0x10(-7)-1.0x10(-2) M and measures total sulfide concentration over a range of pH from 1 to 13. The polymer electrode showed high selectivity for sulfide in the presence of many common interfering anions. The electrode is useful for the measurement of total sulfide in biological environments and can be manufactured in the micron scale. Therefore, it will be useful for the measurement within biofilms.  相似文献   

16.
A two-step "grafting from" method has been successfully carried out, which is based on the electrografting of polyacrylate chains containing an initiator for the atom transfer radical polymerization (ATRP) of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) or copolymerization of TBAEMA with either monomethyl ether of poly(ethylene oxide) methacrylate (PEOMA) or acrylic acid (AA) or styrene. The chemisorption of this type of polymer brushes onto stainless steel surfaces has potential in orthopaedic surgery. These films have been characterized by ATR-FTIR, Raman spectroscopy, atomic force microscopy (AFM), and measurement of contact angles of water. The polymer formed in solution by ATRP and that one detached on purpose from the surface have been analyzed by size exclusion chromathography (SEC) and (1)H NMR spectroscopy. The strong adherence of the films onto stainless steel has been assessed by peeling tests. AFM analysis has shown that addition of hydrophilic comonomers to the grafted chains decreases the surface roughness. According to dynamic quartz crystal microbalance experiments, proteins (e.g., fibrinogen) are more effectively repelled whenever copolymer brushes contain neutral hydrophilic (PEOMA) co-units rather than negatively charged groups (PAA salt). Moreover, a 2- to 3-fold decrease in the fibrinogen adsorption is observed when TBAEMA is copolymerized with either PEOMA or AA rather than homopolymerized or copolymerized with styrene. Compared to the bare stainless steel surface, brushes of polyTBAEMA, poly(TBAEMA-co-PEOMA) and poly(TBAEMA-co-AA) decrease the bacteria adhesion by 3 to 4 orders of magnitude as revealed by Gram-positive bacteria S. aureus adhesion tests.  相似文献   

17.
Simple procedures are provided for exchanging charge-compensating ions in conjugated polyelectrolytes by progressive dilution of the original species and for determining the degree of ion exchange by using X-ray photoelectron spectroscopy. By using these methods, the bromide ions in poly[(9,9-bis(6'-N,N,N-trimethylammoniumbromide)hexyl)fluorene-co-alt-4,7-(2,1,3-benzothiadiazole)]were exchanged with BF4-, CF3SO3-, PF6-, BPh4-, and B(3,5-(CF3)2C6H3)4- (BArF4-). Absorption, photoluminescence (PL), and PL quantum yields (Phi) were measured in different solvents and in solid films cast from methanol. Examination of the resulting trends, together with the spectral bandshapes in different solvents, suggests that increasing the counteranion (CA) size decreases interchain contacts and aggregation and leads to a substantial increase of Phi in the bulk. Size analysis of polymers containing Br- and BArF4- in water by dynamic light scattering techniques indicates suppression of aggregation by BArF4-. Nanoscale current-voltage measurements of films using conducting atomic force microscopy show that hole mobilities and, more significantly, charge injection barriers are CA dependent. These results show that it is possible to significantly modify the optoelectronic properties of conjugated polyelectrolytes by choosing different counterions. A parent conjugated backbone can thus be fine-tuned for specific applications.  相似文献   

18.
Two novel decyloxyphenylquinoxaline-based donor-acceptor(D-A) electroactive monomers bearing dialkoxythiophene as the donor unit are synthesized using Stille coupling reaction. The corresponding polymers, poly[2,3-bis(4-decyloxyphenyl)-5,8-bis(3,4-dimethoxylthiophen-2-yl)quinoxaline](P1) and poly[2,3-bis(4-decyloxyphenyl)-5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)quinoxaline](P2), are directly deposited onto the working electrode surface by electropolymerization. All materials were characterized by nuclear magnetic resonance(NMR), mass spectrometry(MS), scanning electron microscopy(SEM), cyclic voltammetry(CV), ultraviolet-visible absorption spectrometry(UV-Vis) and spectro-electrochemical measurements. Electrochemical studies demonstrate that both polymers are capable of showing both reasonable n- and p-doping processes, and advanced long-term switching stabilities. 3,4-Ethylenedioxythiophene substituted for 3,4-dimethoxythiophene as a donor unit, which enhances the conjugated double-bond character of the conducting polymer, thus leading to a lower electronic band-gap. Likewise, the neutral state color of the synthesized polymer tuned from blue to blue-green corresponding to the red shift of the maximum absorption wavelengths in the visible region. In addition, kinetics study of P1 revealed 42%(595 nm), 30%(839 nm) and 69%(1500 nm) transmittance changes(ΔT%), while P2 exhibited 32%(740 nm), 71%(2000 nm) at the dominant wavelengths. It was also observed that both films could switch quickly between the neutral state and oxidation state, with the response time less than 1 s both in visible and near infrared regions.  相似文献   

19.
The plasmonic Ag-TiO2 (with 0.5 wt% Ag) photocatalyst was prepared on P25 TiO2 surface. The presence of AgNPs on the titania was indicated by the UV–vis spectrum, which showed a plasmonic absorbance band in the visible range (λ max?=?455 nm). XPS measurements suggested that Ag was in metallic (Ag) and in oxide forms on TiO2. Ag-TiO2 photocatalyst and TiO2 were embedded in [poly(ethyl acrylate-co-methyl methacrylate; p(EA-co-MMA)] copolymer to attain mechanically stable, photocatalytically active nanocomposite films. The photooxidation of ethanol was slower on the photocatalyst/polymer nanocomposites, but it could be significantly improved by irradiating them with UV light. The photoaging was applied as a post-preparation treatment to improve the photocatalytic activity of the nanocomposite films. Changed surface morphology and the partial destruction of the polymer were supported by AFM and FTIR results. Contact angle measurements were used to determine the surface free energies of the prepared and the photoaged nanocomposite films.  相似文献   

20.
在导电高分子薄膜表面沉积密度可控的银纳米粒子   总被引:1,自引:0,他引:1  
<正>由于导电高分子的导电性和化学性质可以在导体和半导体区间内快速调节[1],因此其复合材料受到了越来越多的关注[2].金属纳米粒子在光电子器件、检测及传感等诸多领域表现出独特的性能[3],在生物技术领域中的重要性尤为突出[4].因此,如果将导电高分子和金属纳米粒子结合在一起,将有利于拓展导电高分子的应用范围.本文研究了银纳米粒子在聚苯胺薄膜表面的沉积行为,分别用原子力显微镜(AFM)和扫描电子显  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号