首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of polystyrene (PS), poly(methyl methacrylate) (PMMA) and polystyrene-polyacrylonitrile copolymer (PS-AN), containing various embedded transition-metal complexes, have been studied by FTIR microscopy. The spatial distributions of the transition-metal carbonyl complexes throughout the thin organic polymer films have been determined by a two-dimensional IR mapping procedure. The spectral variations observed in the distribution of the metal carbonyls throughout the different polymer films are discussed. The IR data show that the technique used to prepare the organometallic-embedded thin films (viz. freeze-drying of solutions followed by hot mechanical pressing of the residues) does in general lead to homogeneous films which may eventually find industrial application, e.g. as membrane sensors for small molecules.  相似文献   

2.
Polymer/nanoparticle composite films are receiving growing attention thanks to their potential for application in ultra-thin electronic and optical devices. Polymer blend demixing has been shown to be a suitable technique for the structuring of polymer thin films and the patterning of nanoparticles (NP) within them. In this work we show that the morphology of thin polymer films made by spin-casting a polymer blend solution containing NP fillers on a surface depends strongly on the concentration of NP fillers. More specifically, polystyrene/polymethylmethacrylate (PS/PMMA) films formed from a toluene solution, and which demix following a nucleation and growth mechanism, were studied. It was found that both the height and the surface density of PMMA domains increased as the concentration of CoPt:Cu NPs in the film was increased. We find that similar effects are induced in a NP-free PS/PMMA demixed film upon increasing the molecular weight of the PS molecules. This suggests that under certain conditions the NPs and the polymer molecules in the blend do not behave as separate species but form aggregates.  相似文献   

3.
Weak epitaxy growth (WEG) can afford high-mobility thin films of disk-like organic semiconductor of which mobility is up to the level of the corresponding single crystals. We investigated the WEG behavior and mechanism of planar phthalocyanine in the model system of metal-free phthalocyanine (H2Pc) grown on p-sexiphenyl (p-6P) ultrathin films (monolayers and double layers). Highly oriented H2Pc films with molecules standing up exhibited two kinds of different in-plane orientations, i.e., three sets of in-plane orientations and only one set of in-plane orientation, on p-6P monolayer and double-layer films, respectively. The surface geometrical channels of p-6P substrate dominated the oriented nucleation and growth of H2Pc film. Consequently, the H2Pc film showed incommensurate and commensurate epitaxy on p-6P ultrathin films.  相似文献   

4.
We have studied ultrathin spin-coated high-density polyethylene films by means of single-molecule spectroscopy and microscopy at 1.8 K. The films have been doped with 2.3,8.9-dibenzanthanthrene (DBATT) molecules, which function as local reporters of their immediate environment. The orientation distributions of single DBATT probe molecules in 100-200 nm thin films of high-density polyethylene differ markedly from those in low-density films. We have found a preferential orientation of dopant molecules along two well-defined, mutually perpendicular directions. These directions are preserved over at least a 2 mm distance. The strong orientation preference of the probe molecules requires the presence of abundant lateral crystal faces and is therefore not consistent with a spherulitic morphology. Instead, a "shish-kebab" crystal structure is invoked to explain our results.  相似文献   

5.
Porphyrin molecules, of interest as versatile materials for organic electronics, are highly prone to formation of significantly different polymorphic phases. To elucidate the determinants for the specific polymorphic phase formed in thin films as well as for the arrangement of the molecules on a given substrate two different anisotropic substrate surfaces have been selected: KCl(100) and the oxygen reconstructed Cu(110) surface. We observe that the crystal structure of the thin films depends on the substrate, whereas the relative molecular orientations in both cases are similar. X-Ray and transmission electron diffraction of 30 nm thick tetraphenyl-porphyrin (H(2)TPP) and platinum tetraphenyl-porphyrin (PtTPP) thin films deposited on KCl(100) surfaces reveals that both kinds of molecules crystallize in a tetragonal polymorph with the (001) lattice planes, i.e. with their macrocycles, parallel to the substrate. Films deposited on the oxygen reconstructed Cu(110)-(2 × 1)O surface exhibit in contrast the triclinic polymorph even though molecules again align nearly parallel to the substrate surface as observed by LEED and X-ray diffraction. On both substrates we identify two driving forces for the epitaxial alignment of porphyrins: (i) molecules aligning with their macrocycles (nearly) parallel to the substrate surface and (ii) the porphyrin molecules forming a commensurate unit cell with the respective substrate. The polymorphic phase meeting both requirements is the most favorable to be formed on a given substrate and due to this structural flexibility in both cases well-ordered, epitaxially aligned porphyrin thin films are achieved.  相似文献   

6.
In this article, we describe the surface-assisted photoalignment of discotic liquid crystals (DLCs) on thin films of photo-cross-linkable polymers with cinnamoyl moieties as the side chains. Oblique irradiation of the polymer thin films with nonpolarized UV light at 313 nm brought about inclined orientation of the cinnamoyl residues as a result of their direction-selective photoisomerization and photodimerization. The DLC molecules on the photoirradiated polymer films were aligned in a tilted hybrid manner. This means that the DLC directors are continuously altered from the substrate to the DLC film surface so as to minimize the elastic free energy. Interestingly, we found that the tilted direction of aligned DLC molecules is clearly influenced by the chemical structures of the cinnamate-containing polymers. When a poly(vinyl cinnamate) thin film was obliquely exposed to nonpolarized UV light, the DLCs were inclined to the direction opposite to the UV light propagation. In a keen contrast, the thin film of poly(methacrylate)s tethering cinnamoyl groups, which was obliquely exposed to nonpolarized UV light in advance, provided the tilting DLC direction in parallel with the light propagation. The results were supported by tilted orientation of calamitic (rod-shaped) liquid crystal on the obliquely irradiated polymer films. Such photoalignment behavior of the DLCs can be rationalized by anchoring balance between intermolecular interaction of the DLC molecules with the photodimers of polymer films and those with the remaining E-isomers of cinnamoyl side chains at the film interface. The present technique of DLC photoalignment opens promising ways not only to understand anisotropic physical properties of DLCs, but also to design and fabricate novel nanodevices for photonics and electronics applications.  相似文献   

7.
The morphological structure of poly(3‐hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin‐casting methods are investigated. The MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side‐chain stacking, π–π stacking, and conjugated backbone directions. Moreover, the average molecular orientations and relative degrees of crystallinity of MAPLE‐deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin‐casting technique. Despite the seemingly unfavorable molecular orientations and the highly disordered morphologies, the in‐plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin‐cast samples, exhibiting similar transport activation energies (56 vs. 54 meV) to those reported in the literature for high mobility polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 39–48  相似文献   

8.
The stability of ultrathin polymer films plays a crucial role in their technological applications. Here, we systematically investigated the influence of interfacial adsorption in physical aging and the stability of thin polymer films in the solvent-induced process. We further identify the stability mechanism from the theory of thin film stability. Our results show that the aging temperature and film thickness can strongly influence the stability of thin PS films in acetone vapor. Physical aging can greatly improve the stability of thin polymer films when the aging temperature T_(aging1)T_g. A thinner PS film more quickly reaches a stable state via physical aging. At short aging time, the formation of the adsorbed layer can reduce the polar interaction; however, it slightly influences the stability of thin polymer films in the solvent-induced process. At later aging stage,the conformational rearrangement of the polymer chains induced by the interfacial effect at the aging temperature T_(aging1) plays an important role in stabilizing the thin polymer films. However, at T_(aging2)T_g, the process of physical aging slightly influences the stability of the thin polymer films.The formation of the adsorbed layer at T_(aging2) can reduce the short-range polar interaction of the thin film system and cannot suppress the instability of thin polymer films in the solvent-induced process. These results provide further insight into the stable mechanism of thin polymer films in the solvent-induced process.  相似文献   

9.
The measurement and optimization of microstructure development in organic semiconductor films is valuable because microstructure in many cases critically impacts electronic performance. We demonstrate a general method to measure microstructure thickness dependence in thin films using surface-sensitive near edge X-ray absorbance fine structure (NEXAFS) spectroscopy. The method is applied to an oligofluorene derivative DDFTTF, which consists of a fluorene-bithiophene-fluorene core that is end-substituted with linear dodecyl groups. The substrate-relative orientations of the aromatic core and the aliphatic end chains are independently determined, and comparing these orientations to terrace heights from atomic force micrographs proves that the end chains are interdigitated or folded. By measuring microstructure development from 6 to 150 nm, we find that DDFTTF exhibits two different preferential microstructures: one with large terraces within which molecules exhibit a strongly vertical orientation, and one with much smaller domains within which molecules exhibit a mildly horizontal orientation. The relative distribution of these two preferential microstructures depends on the distance of the domains from the substrate and the substrate temperature during deposition. The utility of this method is tested using a lamination technique to measure the saturation hole mobility at the top and bottom interface of DDFTTF films. We find that local microstructures with greater pi orbital alignment in the source-drain plane correlate directly to better local saturation hole mobilities.  相似文献   

10.
Near edge x-ray absorption fine structure (NEXAFS) spectroscopy is used to study the orientation of pentacene molecules within thin films on SiO2 for thicknesses ranging from monolayers to the bulk (150 nm). The spectra exhibit a strong polarization dependence of the pi* orbitals for all films, which indicates that the pentacene molecules are highly oriented. At all film thicknesses the orientation varies with the rate at which pentacene molecules are deposited, with faster rates favoring a thin film phase with different tilt angles and slower rates leading to a more bulklike orientation. Our NEXAFS results extend previous structural observations to the monolayer regime and to lower deposition rates. The NEXAFS results match crystallographic data if a finite distribution of the molecular orientations is included. Damage to the molecules by hot electrons from soft x-ray irradiation eliminates the splitting between nonequivalent pi* orbitals, indicating a breakup of the pentacene molecule.  相似文献   

11.
The aim of this paper was to test the thermal and environmental stability of poly(4-ethynyl-p-xylyleneco-p-xylylene) thin films prepared by chemical vapor deposition(CVD) and to optimize the reaction conditions of the polymer.Fourier transformed infrared spectroscopy(FTIR),thermogravimetric analysis(TGA) and fluorescence microscopy were employed to investigate the stability of the reactive polymer coatings in various environmental conditions.Chemical reactivity of the thin films were then tested by Huisgen 1,3-dipolar cycloaddition reaction(‘‘click' reaction).The alkyne functional groups on poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films were found to be stable under ambient storage conditions and thermally stable up to 100 8C when annealed at 0.08 Torr in argon.We also optimized the click reaction conditions of azide-functionalized molecules with poly(4-ethynyl-p-xylylene-co-p-xylylene).The best reaction result was achieved,when copper concentration was 0.5 mmol/L,sodium ascorbate concentration to copper concentration was 5:1.In contrast,the azide concentration and temperature had no obvious effect on the surface reaction.  相似文献   

12.
Single-molecule fluorescence microscopy was used to investigate the dynamics of perylene diimide (PDI) molecules in thin supported polystyrene (PS) films at temperatures up to 135 °C. Such high temperatures, so far unreached in single-molecule spectroscopy studies, were achieved using a custom-built setup which allows for restricting the heated mass to a minimum. This enables temperature-dependent single-molecule fluorescence studies of structural dynamics in the temperature range most relevant to the processing and to applications of thermoplastic materials. In order to ensure that polymer chains were relaxed, a molecular weight of 3000 g/mol, clearly below the entanglement length of PS, was chosen. We found significant heterogeneities in the motion of single PDI probe molecules near T(g). An analysis of the track radius of the recorded single-probe molecule tracks allowed for a distinction between mobile and immobile molecules. Up to the glass transition temperature in bulk, T(g,bulk), probe molecules were immobile; at temperatures higher than T(g,bulk) + 40 K, all probe molecules were mobile. In the range between 0 and 40 K above T(g,bulk) the fraction of mobile probe molecules strongly depends on film thickness. In 30-nm thin films mobility is observed at lower temperatures than in thick films. The fractions of mobile probe molecules were compared and rationalized using Monte Carlo random walk simulations. Results of these simulations indicate that the observed heterogeneities can be explained by a model which assumes a T(g) profile and an increased probability of probe molecules remaining at the surface, both effects caused by a density profile with decreasing polymer density at the polymer-air interface.  相似文献   

13.
ABSTRACT

Discotic liquid crystals (DLCs) are considered as fascinating systems due to their unique property of self-assembly to yield different columnar structures. DLCs are organic semiconductors and create pathways for the development of numerous optical and electrical devices. The thin films of DLCs can be considered as low dimensional system which can exhibit remarkable optical and physical properties. In this article, we present a review on ultrathin films of some interesting DLC molecules at air–water and air–solid interfaces. The Langmuir monolayer and Langmuir–Blodgett films of DLC molecules are extensively studied. The ultrathin films of DLC molecules can yield highly anisotropic layer wherein the molecular orientation and aggregation can have large impact on the physicochemical properties of the film. Different surface phases with different molecular orientations as function of surface density and temperature can be obtained by forming the Langmuir monolayer of the DLC molecules at the air–water interface. The Langmuir monolayer in a particular phase can be deposited onto the active area of a device layer-by-layer by employing a highly controlled Langmuir–Blodgett technique. Here, we report some interesting results related on molecular orientation of the DLC molecules at different interfaces. Such aggregation of DLC molecules in ultrathin films may find applications in thin film-based electro-optical devices.  相似文献   

14.
The possible use of a static magnetic field during organic molecular beam deposition of thin molecular films for inducing some preferential growth is discussed and the magnetic properties of diamagnetic molecules and molecular crystals are recalled. Considering prototypical materials, namely anthracene molecules and potassium phthalate substrates, which interact and may give rise to polycrystalline films with specific orientations, we show that in the presence of a magnetic field the films display a macroscopic preferential orientation as a result of minimization of the magnetic energy contribution. A very good agreement between the results of optical spectroscopy, atomic force microscopy, and predictions made on the basis of the anisotropic magnetic susceptibility of anthracene is found.  相似文献   

15.
We detail our efforts toward the selective detection of cyclic ketones, e.g. cyclohexanone, a component of plasticized explosives. Thin films comprised of a conjugated polymer are used to amplify the emission of an emissive receptor via energy transfer. We propose that the energy transfer is dominated by an electron-exchange mechanism to an upper excited state of the fluorophore followed by relaxation and emission to account for the efficient energy transfer in the absence of appreciable spectral overlap. Exposure to cyclic ketones results in a ratiometric fluorescence response. The thin films show orthogonal responses when exposed to cyclic ketones versus acyclic ketones. We demonstrate that the exquisite selectivity is the result of a subtle balance between receptor design and the partition coefficient of molecules into the polymer matrix.  相似文献   

16.
Self-assembled poly(4-vinylpyridine)-grafted gold (Au) nanoparticles (NPs) and polystyrene-b-poly(4-vinylpyridine) block copolymers were fabricated by the introduction of a selective solvent to a common solution. The assembled mixtures were spin-coated onto solid substrates to fabricate composite gold/polymer thin films composed of copolymer-hybridized Au NPs and independent copolymer micelles. The obtained composite Au thin films had variable localized surface plasmon resonance (LSPR) bands and microscopic morphologies upon vapor annealing with selective solvents because the adsorption and dissolving of solvent molecules into the films could rearrange the copolymer block. The hybrid nanostructured Au thin films may have potential in vapor sensing and organic assays.  相似文献   

17.
Water ice is observed to order at the copolymer ferroelectric poly(vinylidene difluoride-trifluoroethylene) surface. The successful growth of crystalline thin films of water on these polymer surfaces implicates water to polymer dipole interactions. These ice thin films are sufficiently ordered for experimental identification of the wave vector dependence in the electronic band structure of hexagonal ice. The significant band dispersion, of about 1 eV, suggests strong overlap of molecular orbitals between adjacent water molecules in the ice film. The presence of dipole interactions with adsorbate water is consistent with the possibility of water acting as a spectator to surface ferroelectric transitions in this system.  相似文献   

18.
The surface structure of thin polymer blend films of deuterated polystyrene (dPS) and polyparamethylstyrene (PpMS) after annealing above the glass transition temperature was investigated. With scanning force microscopy (SFM) the surface topography originated by a dewetting process is detected. The sample surface is covered with small droplets consisting of several polymer molecules. Utilizing grazing incidence small angle neutron scattering (GISANS) the topographical information as well as the in‐plane composition is probed. For thin confined blend films a substructure of the droplets resulting from an additional phase separation process at different length scales is detected.  相似文献   

19.
The purpose of this work is to address the issue of applicability of single-molecule spectroscopy (SMS) results for conjugated polymers to "bulk" samples, e.g. conjugated polymer films. Also, some apparent inconsistencies in the literature on SMS regarding the photoluminescence spectral position of conjugated polymers are discussed. We present a series of photoluminescence spectra of thin films of the conjugated polymer poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) with a wide range of varying thickness. The thickness was varied from approximately 20 nm to the value corresponding to well-separated single molecules (SMS sample). The thickness variation resulted in a strong ( approximately 2000 cm(-1)) blue-shift and broadening of the spectrum. The result was reproduced on isolated molecules embedded into a PMMA matrix. This effect cannot be explained by a decrease in energy transfer "freedom" alone. We performed a comprehensive comparison of presented and elsewhere published spectra of MEH-PPV polymer and oligomers in different samples: films, solutions, isolated-molecule coatings and standard SMS samples. The comparison allows that the main reason behind the blue shift is conformational disorder, which is largely dependent on the sample. We also discuss some experimental aspects of SMS, such as representativeness of detected molecules, spectral sensitivity of a setup and temperature. Together with differences in sample preparation method, these issues can explain the existing inconsistencies in the literature.  相似文献   

20.
We report on the fabrication process of a polymer sensing device based on a thin film composite obtained by spinning or casting a carbon fillers/thermoplastic polymer dispersion on a glass substrates. In this work we produce thin composite films characterized by different grade of dispersion of carbon black in polymer matrix (Poly(methyl-methacrylate), Poly(2 hydroxy-ethyl-methacrylate) and atactic poly(styrene)). We discuss, in particular the effect of the polymer and filler characteristics on the thin film morphology. Device material response towards different analytes will be also discussed. Size distribution of filler in polymer suspension and deposition method type strongly influence homogeneity and conductivity of corresponding polymer composite films and finally their sensor properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号