首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent progress on metal oxide nanostructures based on-chip microsupercapacitors was summarized.  相似文献   

2.
Cyclic voltammetry and differential-pulse voltammetry at mm-sized electrodes were used to measure the decrease in the rate of diffusion of metal complexes upon binding to DNA and to extract the binding constants and effective binding site sizes. A linear correlation was observed between the site size determined electrochemically and the diameter of the complexes [site size: Cu(phen)2(2+) > Fe(phen)3(2+) > Co(bipy)3(3+) approximately Fe(bipy)3(2+) > Ru(NH3)6(3+)]. The binding constants were found to be influenced by the charge of the metal complex, the nature of ligand and the geometry about the metal centre. Competition experiments, in which differential pulse voltammetry was used to observe the release of bound metal complex on addition of a second DNA-binding molecule to the solution, were sensitive to the nature and location of the binding sites for the two species. Steady-state voltammetric experiments at microelectrodes are shown to have a number of advantages over cyclic voltammetry and differential pulse voltammetry at mm-sized electrodes for determination of binding constants. In particular, the steady-state diffusion limited current is directly proportional to the diffusion coefficient, rather than its square root, which improves the discrimination between DNA-bound and freely diffusing metal complex. Further, the kinetics of the binding process do not affect the steady state measurement, whereas for transient techniques, e.g., cyclic voltammetry, only a range of values can be extracted corresponding to the limits of fast and slow binding kinetics compared to the experimental timescale.  相似文献   

3.
The pH dependence of adsorption of (14)C-labeled benzoic and oxalic acids on gamma-Al(2)O(3) and hematite was studied in acid medium in the presence of 0.5 mol dm(-3) NaClO(4) supporting electrolyte. It was found that the adsorption of the organic species starts at pH values where the protonation of the oxide surface takes place. In the case of benzoic acid the extent of adsorption with decreasing pH goes through a sharp maximum at a pH value not far from the pK (4.2) of the acid, while in the case of oxalic acid only a small decrease can be observed at very low pH values (pH<1). In indirect radiotracer studies using (35)S-labeled sulfate ions it was shown that the competitive adsorption of formic, malonic, maleic, and oxalic acids with sulfate ions depends on pH and the effect of the organic acid on the anion adsorption becomes pronounced at pH values about and above the pK of the acid. On the basis of these observations and considerations concerning the dissociation of the organic acids studied it is assumed that the specific adsorption of the anionic form of the acids takes place. It is, however, emphasized that the negative charge of the anions, consequently the electrostatic forces, do not play significant role in the adsorption.  相似文献   

4.
Since the discovery of the intercalative binding mode, almost half a century ago, intense efforts have been devoted to design, synthesize and test new small molecules that can bind nucleic acids with improved recognition and affinity. Among them, metal bearing compounds play a principal role. Despite the plethora of different metal complexes which have been designed to react with DNA and which have been tested, the binding mechanisms have often not been analysed. This is unfortunate, considering the importance of understanding of the binding features in depth in order to optimise their biological effects. This review covers articles where an analysis of the kinetic aspects of the interaction between the target metal compound and nucleic acids has been carried out and details of the reaction mechanism are provided. Flat metal complexes (porphyrins), spherical complexes with protruding intercalating residues, azamacrocycle metallo-intercalators and intercalators with metal bearing pendant arms are the classes of molecules that have been taken into account. The limits of the SDS method, employed to measure the rates of drug dissociation from polynucleotides, are also discussed.  相似文献   

5.
An attempt to obtain aluminium hydroxide that could give aluminium oxides of increased thermal stability was made. Aluminium hydroxide was precipitated during a hydrolysis of aluminium chloride in ammonia medium. The influence of preparative conditions, such as a dosing rate of aluminium precursor, pH, duration of the precipitate refluxing and temperature of calcination, on the properties of obtained hydroxides and oxides was investigated. The materials were studied with the following methods: thermal analysis, IR spectroscopy, low-temperature nitrogen adsorption and adsorption–desorption of benzene vapours. Precipitated boehmites had high values of S BET determined from nitrogen adsorption (220–300 m2g–1), good sorption capacity for benzene vapours, developed mesoporous structure and hydrophilic character. It has been proved that a high pH value during the precipitation of aluminium hydroxide favoured better crystallisation of boehmite structure, higher temperature of its dehydroxylation into γ-Al2O3, and delayed transformation of γ phase into α-Al2O3. Aluminium oxides derived from the hydroxides precipitated at a high pH were the most stable at high temperatures, and were characterised with the best surface properties. The online version of the original article can be found at  相似文献   

6.
The paper concerns aluminium hydroxides precipitated during hydrolysis of aluminium acetate in ammonia medium, as well as aluminium oxides obtained through their calcination at 550, 900 or 1200°C for 2 h. The following techniques were used for analysing of obtained materials: thermal analysis, IR spectroscopy, X-ray diffraction, low-temperature nitrogen adsorption, adsorption-desorption of benzene vapours and scanning electron microscopy. Freshly precipitated boehmite/pseudoboehmite had high value of S BET, very good sorption capacity for benzene vapours, developed mesoporous structure and hydrophilic character. After prolonged refluxing at elevated temperature its crystallinity increased which was accompanied by a decrease of specific surface determined from nitrogen adsorption, decrease of sorption capacity for benzene vapours and weakening of the hydrophilic character. Calcination of all hydroxides at the temperature up to 1200°C resulted in the formation of α-Al2O3 via transition forms of γ-, δ-and θ-Al2O3. The samples of aluminium oxides obtained after calcination at 550 and 900°C were characterised with high values of specific surface area and displayed quite high heat resistance, probably due to a specific morphology of starting hydroxides. The process of ageing at elevated temperature developed thermal stability of aluminium oxides.  相似文献   

7.
The process of hydrolysis of aqueous aluminium sulfate was carried on in ammonia medium at 100°C and for different time intervals (0, 20, 39 or 59 h). The products thus obtained were calcined at 550, 900 or 1200°C for 2 h with the aim to obtain aluminium oxides. The materials were studied with the following methods: thermal analysis, IR spectroscopy, X-ray diffraction, low-temperature nitrogen adsorption, adsorption–desorption of benzene vapours and scanning electron microscopy. Freshly precipitated material was an amorphous basic aluminium sulfate which after prolonged refluxing at elevated temperature in a mother liquor underwent a phase transformation into highly crystalline NH4Al13(SO4)2(OH)6 containing tridecameric unit Al13. It was accompanied by a decrease of specific surface area and the formation of a porous structure less accessible for benzene molecules. Regardless of the duration of the hydrolysis process, all products were characterised with poorly developed porous structure and hydrophilic character. Their calcination at the temperature up to 1200°C resulted in the formation of α-Al2O3 via transition forms of γ/η- and δ-Al2O3. The samples of aluminium oxides obtained after calcination at 550 and 900°C had higher values of specific surface area than starting materials due to processes of dehydroxylation and desulfurization. The process of calcination up to 900°C was reflected in developing of not only porous structure but also hydrophobic character of prepared materials. The S BET values calculated for the oxide samples obtained from aged products of hydrolysis at 1200°C were lower than for the analogous sample prepared without the ageing step. It was concluded that prolonged refluxing at elevated temperature of the products of hydrolysis of aluminium sulfate decreased thermal stability of final aluminium oxides.  相似文献   

8.
The design and fabrication of solid nanomaterials are the key issues in heterogeneous catalysis to achieve desired performance.Traditionally,the main theme is to reduce the size of the catalyst particles as small as possible for maximizing the number of active sites.In recent years,the rapid advancement in materials science has enabled us to fabricate catalyst particles with tunable morphology.Consequently,both size modulation and morphology control of the catalyst particles can be achieved independently or synergistically to optimize their catalytic properties.In particular,morphology control of solid catalyst particles at the nanometer level can selectively expose the reactive crystal facets,and thus drastically promote their catalytic performance.In this review,we summarize our recent work on the morphology impact of Co3O4,CeO2 and Fe2O3 nanomaterials in catalytic reactions,together with related literature on morphology-dependent nanocatalysis of metal oxides,to demonstrate the importance of tuning the shape of oxide-nanocatalysts for prompting their activity,selectivity and stability,which is a rapidly growing topic in heterogeneous catalysis.The fundamental understanding of the active sites in morphology-tunable oxides that are enclosed by reactive crystal facets is expected to direct the development of highly efficient nanocatalysts.  相似文献   

9.
纳米结构催化剂的设计与制备是多相催化的核心问题之一.提高催化活性的传统方法是减小催化剂粒子的尺寸以暴露更多的表面活性位,即纳米催化中的尺寸效应,但这种方法往往带有一定程度的经验性和随机性.近年来,随着纳米材料科学的快速发展,在溶液体系中通过自下而上的合成技术已经可以在纳米尺度上有效调变固体催化剂粒子的形貌.通过纳米催化材料的形貌可控合成,可选择性地暴露高活性或特定能量晶面,从而大幅度提升催化反应活性、选择性和稳定性,也就是纳米催化中的形貌效应,这也是当前纳米催化研究的热点之一.本文以作者近年来研究的C0304、CeO2和Fe2O3为重点,总结了纳米结构金属氧化物在多相催化反应中的形貌效应,分析了氧化物暴露品面的化学性质对催化性能的作用机制.这种基于形貌效应的纳米催化不仅加深了在纳米尺度甚至原子层次上对催化剂构一效关系的认知,而且对设计和开发实用高效催化剂也具有重要的理论价值.  相似文献   

10.
Nanofibrous LaMnO(3) can be immobilized on macrostructured materials using carbon nanofibers as templates; their application as macro-nanostructured catalysts are also presented.  相似文献   

11.
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations to trimethyl phosphate, TMP. Endothermic loss of the intact TMP ligand is the only dissociation pathway observed for all complexes. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TMP and the M+(TMP) complexes. Theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between theory and experiment is reasonably good for all complexes except Li+(TMP). The absolute M+-(TMP) BDEs are found to decrease monotonically as the size of the alkali metal cation increases. No activated dissociation was observed for alkali metal cation binding to TMP. The binding of alkali metal cations to TMP is compared with that to acetone and methanol.  相似文献   

12.
Ordered mesoporous metal oxides: synthesis and applications   总被引:2,自引:0,他引:2  
Ren Y  Ma Z  Bruce PG 《Chemical Society reviews》2012,41(14):4909-4927
Great progress has been made in the preparation and application of ordered mesoporous metal oxides during the past decade. However, the applications of these novel and interesting materials have not been reviewed comprehensively in the literature. In the current review we first describe different methods for the preparation of ordered mesoporous metal oxides; we then review their applications in energy conversion and storage, catalysis, sensing, adsorption and separation. The correlations between the textural properties of ordered mesoporous metal oxides and their specific performance are highlighted in different examples, including the rate of Li intercalation, sensing, and the magnetic properties. These results demonstrate that the mesoporosity has a direct impact on the properties and potential applications of such materials. Although the scope of the current review is limited to ordered mesoporous metal oxides, we believe that the information may be useful for those working in a number of fields.  相似文献   

13.
Current approaches to study of the kinetics of the dissolution of metallic powders and metal oxides are discussed. The applicability of the various kinetic equations to the rate of a topochemical reaction is discussed. It is determined by features of the appearance and growth of the nuclei of the solid product, by the change in the size of the interface of the solid phases, and by the effect of the reaction product. For the case of the kinetics of reaction of copper, nickel, cobalt, zinc, cadmium, and lead powders and their oxides with aqueous and nonaqueous solutions of ammonium salts it was shown that the conditions of formation, the properties, and the behavior of the product layer formed on the surface of the reacting particle can have a determining effect on the kinetics and mechanism of the reaction. The results from the kinetic experiment are examined in terms of a model described by the generalized topochemical equation =1 – exp(–ktn) and also a model based on an analysis of the reaction rate constants at various sections of the kinetic curve. Correlations were established between the coefficient n in the generalized topochemical equation and also the rate constant and density or solubility of the reaction product formed on the surface of the reacting particle.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 31, No. 5, pp. 284–297, September–October, 1995.  相似文献   

14.
Summary The protonation constants of several metal extractants, especially hydroxamic acids have been determined by a solvent extraction method. The influence of the acidity on the solubility and the distribution ratio has been studied. A plot correlates the protonation behaviour of these metal extractants with the Hammett Acidity Function, Ho. The protonation constant is useful to explain the acid catalysed hydrolysis rate of these metal extractants and to determine the extraction coefficients of their metal chelates.  相似文献   

15.
Metal ions play key structural and functional roles in many nucleic acid systems, particularly as required cofactors for many catalytic RNA molecules (ribozymes). We apply the pulsed EPR technologies of electron spin-echo envelope modulation and electron spin-echo-electron nuclear double resonance to the structural analysis of the paramagnetic metal ion Mn(II) bound to nucleotides and nucleic acids. We demonstrate that pulsed EPR, supplemented with specific isotope labeling, can characterize ligation to nucleotide base nitrogens, outer-sphere interactions with phosphate groups, distances to sites of specific (2)H atom labels, and the hydration level of the metal ion. These techniques allow a comprehensive structural analysis of the mononucleotide model system MnGMP. Spectra of phenylalanine-specific transfer RNA from budding yeast and of the hammerhead ribozyme demonstrate the applicability of the methods to larger, structured RNA systems. This suite of experiments opens the way to detailed structural characterization of specifically bound metal ions in a variety of ribozymes and other nucleic acids of biological interest.  相似文献   

16.
During the past decade, cationic lipids have emerged as the primary choice for gene delivery in vitro, i.e. transfection of cultured cells. A number of lipids with cationic head groups have been synthesized and evaluated. However, their success in vivo for gene therapy has been limited. To date, simple electrostatic complexes of cationic lipid mixtures with DNA have been hampered in numerous aspects: lack of colloidal stability, relatively low efficiency observed as expression levels or % of transfected cells, short duration of expression, and most importantly, non-specific interactions with many cells and tissues. Appreciation of the complexity of in vivo requirements, and especially opposing requirements for extra- and intracellular trafficking, is leading to engineered designs of gene delivery vectors containing cationic lipids. These designs attempt to assemble layered colloidal systems that accommodate the multiple functions required to traverse the various extra- and intracellular barriers. Successful development of such systems will depend on the ability to characterize and optimize each step rather than rely only on reporter gene expression, in addition to the obvious need to characterize the layered nature of the complexes. Importantly, many pharmacological aspects must be considered, especially control of the biodistribution and toxicity. Initial reports on such systems appear to provide at least a proof of the concept.  相似文献   

17.
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations, Na+, K+, Rb+, and Cs+, to triethyl phosphate (TEP). The primary and lowest energy dissociation pathway in all cases is the endothermic loss of the neutral TEP ligand. Theoretical electronic structure calculations at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G* level of theory are used to determine the structures, molecular parameters, and theoretical estimates for the BDEs of these complexes. For the complexes to Rb+ and Cs+, theoretical calculations were performed using hybrid basis sets in which the effective core potentials and valence basis sets of Hay and Wadt were used to describe the alkali metal cation, while the standard basis sets were used for all other atoms. The agreement between theory and experiment is excellent for the complexes to Na+ and K+ and is somewhat less satisfactory for the complexes to the heavier alkali metal cations, Rb+ and Cs+, where effective core potentials were used to describe the cation. The trends in the binding energies are examined. The binding of alkali metal cations to triethyl phosphate is compared with that to trimethylphosphate.  相似文献   

18.
Studies of Mn, Cr, Cu, La, Sb, V, Co and W oxides as catalysts for the electrocatalytic oxidation of aniline to p-aminophenol have revealed the electrocatalytic activity of WO3. A mathematical model for the kinetics of analine oxidation on WO3 is suggested that agrees fairly well with the experimental data.
Mn, Cr, Cu, La, Sb, V, Co, W -. , . , , .
  相似文献   

19.
The catalytic oxidation of dodecane on individual and mixed vanadium and molybdenum oxides is studied. Products of the oxidation of alkane are studied qualitatively and quantitatively. The activities of the samples of the catalysts with various ratios of vanadium and molybdenum oxides are compared. One possible scheme for the activation of reagents on a catalyst is given.  相似文献   

20.
Adsorption of nucleic acids on collodion films from solutions of different ionic strengths was studied, and the adsorption equilibrium constants were determined. The primary adsorption of DNA samples on collodion films was examined depending on various factors. A comparative analysis of different techniques (vacuum drying, UV irradiation) employed for immobilization of DNA samples on collodion films was carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号