首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyelectrolyte poly(ethylenenimine), PEI, is shown to strongly influence the adsorption of the anionic-nonionic surfactant mixture of sodium dodecyl sulfate, SDS, and monododecyl hexaethylene glycol, C(12)E(6), at the air-solution interface. In the presence of PEI, the partitioning of the mixed surfactants to the interface is highly pH-dependent. The adsorption is more strongly biased to the SDS as the pH increases, as the PEI becomes a weaker polyelectrolyte. At surfactant concentrations >10(-4) M, the strong interaction and adsorption result in multilayer formation at the interface, and this covers a more extensive range of surfactant concentrations at higher pH values. The results are consistent with a strong interaction between SDS and PEI at the surface that is not predominantly electrostatic in origin. It provides an attractive route to selectively manipulate the adsorption and composition of surfactant mixtures at interfaces.  相似文献   

2.
Neutron reflectivity and surface tension have been used to characterize the adsorption of the polyelectrolyte/ionic surfactant mixture of poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) at the air-water interface. The surface tension behavior and adsorption patterns show a strong dependence upon the solution pH. However, the SDS adsorption at the interface is unexpectedly most pronounced when the pH is high (when the polymer is essentially a neutral polymer) and when the polymer architecture is branched rather than linear. For both the branched and the linear PEI polymer/surfactant complex formation results in a significant enhancement of the amount of SDS at the interface, down to surfactant concentrations approximately 10(-6) M. For the branched PEI a transition from a monolayer to a multilayer adsorption is observed, which depends on surfactant concentration and pH. In contrast, for the linear polymer, only monolayer adsorption is observed. This substantial increase in the surface activity of SDS by complexation with PEI results in spontaneous emulsification of hexadecane in water and the efficient wetting of hydrophobic substrates such as Teflon. In regions close to charge neutralization the multilayer adsorption is accentuated, and more extensively ordered structures, giving rise to Bragg peaks in the reflectivity data, are evident.  相似文献   

3.
The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ~30 ? thick, with a mean area per molecule of ~400 ?(2) and a volume fraction of ~0.7, for concentrations greater than 0.01 g/L, and the adsorption is independent of the solution pH. In competition with the conventional surfactants CTAB, SDS, and C(12)E(6) at pH 7, the HFBII adsorption totally dominates the surface for surfactant concentrations less than the critical micellar concentration, cmc. Above the cmc of the conventional surfactants, HFBII is displaced by the surfactant (CTAB, SDS, or C(12)E(6)). For C(12)E(6) this displacement is only partial, and some HFBII remains at the surface for concentrations greater than the C(12)E(6) cmc. At low pH (pH 3) the patterns of adsorption for HFBII/SDS and HFBII/C(12)E(6) are different. At concentrations just below the surfactant cmc there is now mixed HFBII/surfactant adsorption for both SDS and C(12)E(6). For the HFBII/SDS mixture the structure of the adsorbed layer is more complex in the region immediately below the SDS cmc, resulting from the HFBII/SDS complex formation at the interface.  相似文献   

4.
To study the influence of the head group in the properties of the mixed monolayers adsorbed at the air-water interface, the surface tension and surface potential of binary mixtures of surfactant have been determined as a function of the surfactant composition. Experiments were carried out with anionic-zwitterionic sodium dodecyl sulfate and dodecyl dimethyl ammoniopropane sulfonate (SDS/DDPS), and cationic-zwitterionic dodecyl trimethylammonium bromide and dodecyl dimethyl ammoniopropane sulfonate (DTAB/DDPS), and dodecyl trimethylammonium bromide and tetradecyl dimethyl ammoniopropane sulfonate (DTAB/TDPS). It was shown that mixed monolayers of cationic-zwitterionic surfactant exhibit small negative deviations of ideal behavior, whereas for SDS/DDPS monolayers show strong negative deviation from the ideality. Deviations of ideal behavior are interpreted by regular solution theory. The surface potential values agree very well with the concentration of the ionic component at the interface. The dynamic surface tension values show that the adsorption kinetics on the interface is a diffusion-controlled process. In monolayers with significant deviation of the ideal behavior, anionic-zwitterionic, there is some evidence of intermolecular attractions after diffusion of both surfactants at the interface.  相似文献   

5.
The manipulation of the adsorption of the anionic surfactant, sodium dodecyl sulfate, SDS, onto hydrophilic silica by the polyelectrolytes, polyethyleneimine, PEI, ethoxylated PEI, and the polyamine, pentaethylenehexamine, has been studied using neutron reflectometry. The adsorption of a thin PEI layer onto hydrophilic silica promotes a strong reversible adsorption of the SDS through surface charge reversal induced by the PEI at pH 7. At pH 2.4, a much thicker adsorbed PEI layer is partially swelled by the SDS, and the SDS adsorption is now no longer completely reversible. At pH 10, there is some penetration of SDS and solvent into a thin PEI layer, and the SDS adsorption is again not fully reversible. Ethoxylation of the PEI (PEI-EO(1) and PEI-EO(7)) results in a much weaker and fragile PEI and SDS adsorption at both pH 3 and pH 10, and both polymer and surfactant desorb at higher surfactant concentrations (>critical micellar concentration, cmc). For the polyamine, pentaethylenehexamine, adsorption of a layer of intermediate thickness is observed at pH 10, but at pH 3, no polyamine adsorption is evident; and at both pH 3 and pH 10, no SDS adsorption is observed. The results presented here show that, for the amine-based polyelectrolytes, polymer architecture, molecular weight, and pH can be used to manipulate the surface affinity for anionic surfactant (SDS) adsorption onto polyelectrolyte-coated hydrophilic silica surfaces.  相似文献   

6.
The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH.  相似文献   

7.
The addition of electrolyte (0.1 M NaCl) is shown to have a significant impact upon the surfactant concentration and solution pH dependence of the adsorption of sodium dodecyl sulfate (SDS)/polyethyleneimine (PEI) complexes at the air-solution interface. Substantial adsorption is observed over a wide surfactant concentration range (from 10(-6) to 10(-)2 M), and over much of that range of concentrations the adsorption is characterized by the formation of surface multilayers. The surface multilayer formation is most pronounced at high pH and for PEI with a lower molecular weight of 2K, compared to the higher molecular weight of 25K. These results, obtained from a combination of neutron reflectivity and surface tension, highlight the substantial enhancement in surfactant adsorption achieved by the addition of a combination of the polyelectrolyte, PEI, and a simple electrolyte. Furthermore the effect of electrolyte on the pH dependence of the adsorption further highlights the importance of the hydrophobic interaction in surface surfactant/polyelectrolyte complex formation.  相似文献   

8.
The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.  相似文献   

9.
Interaction of sodium dodecyl sulfate (SDS) with the cationic polyelectrolyte poly(ethyleneimine) (PEI) was investigated in this study. Turbidity measurements were performed in order to analyze the interaction and complex formation in bulk solution as a function of polymer concentration and pH. Surface tension measurements were made to investigate the properties of SDS/PEI/water mixtures at air/solution interface. Results revealed that SDS/PEI complexes form in solution depending on the surfactant and polymer concentration. A decrease was observed in surface tension values in the presence of SDS/PEI mixtures compared to the values of pure SDS solutions. Both solution and interfacial properties exhibited pH dependent behavior. A shift was seen in the critical micelle concentration of SDS solutions as a function of PEI concentration and solution pH. Monovalent and divalent salt additions showed some influence on the interfacial properties of SDS solutions in the presence of PEI.  相似文献   

10.
The interactions between the weak polyelectrolyte, poly(2-(dimethylamino) ethyl methacrylate) or PDMAEMA, and the anionic surfactant sodium dodecyl sulfate (SDS) at the air-water interface have been investigated at pH = 3 and 9 using a combination of neutron reflectivity and surface tension measurements. By using deuterated PDMAEMA in combination with h-SDS and d-SDS, we have been able to directly determine the distribution of both the polymer and the surfactant at the air-water interface. At pH = 3, the polyelectrolyte is positively charged while at pH = 9 it is essentially uncharged. The enhancement in the adsorption of SDS at low coverage suggests that surface active polymer surfactant complexes are forming and adsorbing at the interface. This leads to close to monolayer adsorption of SDS, suggesting that it is surfactant monomers that are complexing with polymers that are in extended conformations parallel to the surface. As the concentration of SDS in the mixtures changes so does the surfactant content of the complexes, which affects the surface activity and hence the coverage of the complexes. Multilayer structures are formed at SDS concentrations of 0.1 and 1 mM, for pH = 3 and 9, respectively.  相似文献   

11.
The use of mixed surfactants for modification of solid surfaces is important for many applications, since beneficial synergism often occurs depending on the surfactant type and mixing conditions. Systematical information on the properties of surfactant mixtures at the solid/liquid interface can be helpful for optimizing the interactions between the surfactants and then their corresponding performance. In this work, a nonionic/anionic surfactant combination, n-dodecyl beta-d-maltoside (DM) and sodium dodecyl sulfonate (SDS), was selected for the study of adsorption on an oxide solid, alumina. Interestingly, the mixture of the two surfactants with opposite pH-dependence of adsorption on alumina exhibits some unique synergistic or antagonistic features that were found to be tunable in the region of pH 4-10. In addition, the DM/SDS molar ratio in the adsorbed layer was found to decrease with concentration in the saturated region at all the pH and mixing ratios tested. The decrease is attributed to the monomer concentration changes in solution due to the difference in surface activities of the two surfactants. The tunable features of this mixture at the solid/liquid interface provide a way to optimize the properties by changing the mixing conditions. This can be valuable in many applications, such as enhanced oil recovery, flotation, and solubilization.  相似文献   

12.
The impact of ethyleneimine architecture on the adsorption behavior of mixtures of small poly(ethyleneimines) and oligoethyleneimines (OEIs) with the anionic surfactant sodium dodecylsulfate (SDS) at the air-solution interface has been studied by surface tension (ST) and neutron reflectivity (NR). The strong surface interaction between OEI and SDS gives rise to complex surface tension behavior that has a pronounced pH dependence. The NR data provide more direct access to the surface structure and show that the patterns of ST behavior are correlated with substantial OEI/SDS adsorption and the spontaneous formation of surface multilayer structures. The regions of surface multilayer formation depend upon SDS and OEI concentrations, on the solution pH, and on the OEI architecture, linear or branched. For the linear OEIs (octaethyleneimine, linear poly(ethyleneimine) or LPEI(8), and decaethyleneimine, LPEI(10)) with SDS, surface multilayer formation occurs over a range of OEI and SDS concentrations at pH 7 and to a much lesser extent at pH 10, whereas at pH 3 only monolayer adsorption occurs. In contrast, for branched OEIs BPEI(8) and BPEI(10) surface multilayer formation occurs over a wide range of OEI and SDS concentrations at pH 3 and 7, and at pH 10, the adsorption is mainly in the form of a monolayer. The results provide important insight into how the OEI architecture and pH can be used to control and manipulate the nature of the OEI/surfactant adsorption.  相似文献   

13.
Two polymer-surfactant mixtures have been studied at the air-water interface using neutron reflectivity and surface tension techniques. For the noninteracting system poly(N-isopropylacrylamide) (PNIPAM)/octaethyleneglycol mono n-decyl ether (C10E8), the adsorption behavior is competitive and driven purely by surface pressure (pi). When pi(polymer) > pi(surfactant), the surface layer consists of almost pure polymer, and for pi(polymer) < pi(surfactant), the polymer is displaced from the surface by the increasing pressure of the surfactant. Beyond the CMC, the polymer is completely displaced from the surface. For the interacting system PNIPAM/sodium dodecyl sulfate (SDS) where the two species interact strongly in the bulk beyond the critical aggregation concentration (CAC), the surface behavior is more original. Earlier neutron reflectivity studies investigated PNIPAM adsorption behavior where the SDS was contrast-matched to the solvent. In the present study, complementary measurements of SDS adsorption where PNIPAM is contrast-matched to the solvent give a complete view of the surface composition of the mixed system. At a constant polymer concentration, with increasing SDS, three main regimes are obtained. For C(SDS) < CAC, adsorption is governed by simple competition and PNIPAM is predominant at the interface. At intermediate SDS concentration (CAC < C(SDS) < x2, where x2 indicates the predominance of free SDS micelles), interfacial behavior is governed by bulk polymer-surfactant interaction. Adsorbed polymer is displaced from the interface to form PNIPAM-SDS complex in the bulk. SDS adsorption remains weak since most of the SDS molecules are used to form bulk polymer-surfactant aggregates. Further increase in SDS concentration results in continued displacement of PNIPAM and an abrupt increase in SDS adsorption. This is a result of saturation of bulk polymer chain with adsorbed micelles. Interestingly, beyond x2, PNIPAM is not completely displaced from the surface. A mixed PNIPAM-SDS adsorbed layer with enhanced packing of the SDS monolayer is formed.  相似文献   

14.
The adsorption and aggregation of β-amyloid (1-16) fragment at the air-water interface was investigated by the combination of second harmonic generation (SHG) spectroscopy, Brewster angle microscopy (BAM), and molecular dynamics simulations (MD). The Gibbs free energy of surface adsorption was measured to be -10.3 kcal/mol for bulk pHs of 7.4 and 3, but no adsorption was observed for pH 10-11. The 1-16 fragment is believed not to be involved in fibril formation of the β-amyloid protein, but it exhibits interesting behavior at the air-water interface, as manifested in two time scales for the observed SHG response. The shorter time scale (minutes) reflects the surface adsorption, and the longer time scale (hours) reflects rearrangement and aggregation of the peptide at the air-water interface. Both of these processes are also evidenced by BAM measurements. MD simulations confirm the pH dependence of surface behavior of the β-amyloid, with largest surface affinity found at pH = 7. It also follows from the simulations that phenylalanine is the most surface exposed residue, followed by tyrosine and histidine in their neutral form.  相似文献   

15.
A peptide fraction having an average size of 5.6 amino acids has been purified from a rapeseed hydrolyzate, acylated using C(10)-C(14) acyl chlorides, and the surface tension values at the air-water interface and emulsifying properties studied. As compared with standard surface-active proteins, such as bovine serum albumin (BSA), and with detergents such as sodium dodecyl sulfate (SDS), acylated peptides exhibited particular surface characteristics. The surface tension at air-water interface of acylated peptides ranged from 29.1 to 37.8 mN/m at equilibrium; these values were considerably lower than those for BSA and closer those for SDS, suggesting that acylated peptides pack at the air-water interface more like detergents than like proteins. The adsorption of acylated peptides to the oil-water interface was slower than for SDS or BSA, as deduced from the rather large size of oil droplets in emulsions (31-17 microm). Consequently, these emulsions creamed extensively during aging. Nevertheless, emulsions generated from acylated peptides were in general more stable to phase separation than those prepared from SDS. The C(14) acylated peptides were more effective for generating emulsions than the C(10) and C(12) derivatives, especially concerning the stability of emulsions against coalescence and phase separation, which was better than SDS and close to BSA.  相似文献   

16.
We have studied assembly at air-water and liquid-liquid interfaces with an emphasis on systems containing both surfactants and nanoparticles. Anionic surfactants, sodium dodecyl sulfate (SDS) and non-ionic surfactants, Triton X-100 and tetraethylene glycol alkyl ethers (C(8)E(4), C(12)E(4) and C(14)E(4)), effectively decrease the surface tension of air-water interfaces. The inclusion of negatively charged hydrophilic silica nanoparticles (diameters of approximately 13 nm) increases the efficiency of the SDS molecules but does not alter the performance of the non-ionic surfactants. The former is likely due to the repulsive Coulomb interactions between the SDS molecules and nanoparticles which promote the surfactant adsorption at air-water interfaces. For systems involving trichloroethylene (TCE)-water interfaces, the SDS and Triton X-100 surfactants effectively decrease the interfacial tensions and the nanoparticle effects are similar compared to those involving air-water interfaces. Interestingly, the C(12)E(4) and C(14)E(4) molecules, with or without the presence of nanoparticles, fail to decrease the TCE-water interfacial tensions. Our molecular dynamics simulations have suggested that the tetraethylene glycol alkyl ether molecules tend to disperse in the TCE phase rather than adsorb at the TCE-water interfaces.  相似文献   

17.
Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.  相似文献   

18.
This paper demonstrates the use of polyelectrolytes to modify and manipulate the adsorption of ionic surfactants onto the hydrophilic surface of silica. We have demonstrated that the cationic polyelectrolyte poly(dimethyl diallylammonium chloride), poly-dmdaac, modifies the adsorption of cationic and anionic surfactants to the hydrophilic surface of silica. A thin robust polymer layer is adsorbed from a dilute polymer/surfactant solution. The resulting surface layer is cationic and changes the relative affinity of the cationic surfactant hexadecyl trimethylammonium bromide, C16TAB, and the anionic surfactant sodium dodecyl sulfate, SDS, to adsorb. The adsorption of C16TAB is dramatically reduced. In contrast, strong adsorption of SDS was observed, in situations where SDS would normally have a low affinity for the surface of silica. We have further shown that subsequent adsorption of the anionic polyelectrolyte sodium poly(styrene sulfonate), Na-PSS, onto the poly-dmdaac coated surface results in a change back to an anionic surface and a further change in the relative affinities of the cationic and anionic surfactants for the surface. The relative amounts of C16TAB and SDS adsorption depend on the coverage of the polyelectrolyte, and these preliminary measurements show that this can be manipulated.  相似文献   

19.
Isothermal titration microcalorimetry (ITC), conductivity, and turbidity measurements have been carried out to study the interaction of sodium dodecyl sulfate (SDS) with polyethyleneimines (PEI) including linear PEI and branched PEI at different pH values of 3, 7, and 10. In all cases, the polymers show a remarkable affinity toward SDS. At pH 3, the polymer PEI is a strong polycation, and the binding is dominated by electrostatic 1:1 charge neutralization with the anionic surfactant. At pH 7, the electrostatic attraction between SDS and PEI is weak, and the hydrophobic interaction becomes stronger. At the natural pH of 10, PEI is essentially nonionic and binds SDS in the form of polymer-bound surfactant aggregates. The charge neutralization concentration (C1) of SDS for the PEI-SDS complex can be derived from the curves of variation of the enthalpy, conductivity, and turbidity with SDS concentration. There is good agreement between the results from the three methods and all show a decrease with increasing pH. The total interaction enthalpies (deltaH(total)) of PEI with SDS are obtained from the observed enthalpy curves and the difference enthalpy (deltaH*) between the total enthalpy of branched PEI with SDS, and the total enthalpy of linear PEI with SDS can be derived from the obtained deltaH(total). The difference deltaH* increases dramatically as pH increases, which indicates that the interactions are different for linear PEI and branched PEI at high pH values. A schematic map of the different states of aggregation is presented.  相似文献   

20.
The dilational rheological behavior of gelatin molecules adsorbed at the air-water interface has been studied as a function of sodium dodecyl sulfate (SDS) concentration for a 7 wt % gelatin-SDS solution at 40 degrees C. Binding of SDS molecules to the gelatin strands disrupts the cross-linked network structure of adsorbed gelatin molecules and results in a reduction of the surface elastic modulus of the adsorbed layer that continues until the bulk SDS concentration reaches 1 mM. Beyond this SDS concentration, the dilational rheological properties of the adsorbed gelatin layer are indistinguishable from those of pure SDS adsorbed layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号