首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel based assemblies (aggregates) were synthesized from microgels of various diameters via polymerization of the crosslinker N,N′-methylenebisacrylamide (BIS) in the presence of microgels in solution. We investigated the ability of the respective aggregates to remove the organic, azo dye molecule 4-(2-hydroxy-1-napthylazo) benzenesulfonic acid sodium salt (Orange II) from water at both room and elevated temperatures. The results from the microgel aggregates made from 1.1-μm-diameter [Parasuraman and Serpe. ACS Applied Materials & Interfaces, 2011] microgels were compared to aggregates synthesized from 321-nm and 1.43-μm-diameter microgels. Aggregates made from the same size microgels showed increased uptake efficiency as the concentration of BIS in the aggregates was increased, while for a given BIS concentration, the uptake efficiency increased with increasing microgel size in the aggregate. We attribute this to the “nature” of the aggregates; aggregates have void space between the microgels that can serve as reservoirs for Orange II uptake—the void spaces are hypothesized to increase with larger diameter microgels. By exploiting the thermoresponsive nature of the microgels, and microgel based aggregates, 85.3 % removal efficiencies can be achieved. Finally, all uptake trends for the aggregates, at room temperature, were fit with a Langmuir sorption isotherm model.  相似文献   

2.
We report here a novel strategy for the high-sensitive detection of target biomolecules with very low concentrations on a quartz crystal microbalance (QCM) device using gold nanoparticles as signal enhancement probes. By employing a streptavidin-biotin interaction as a model system, we could prepare biotin-conjugated gold nanoparticles maintaining good dispersion and long-term stability by controlling the biotin density on the surface of gold nanoparticles that have been investigated by UV-vis spectra and AFM images. These results showed that 10 microM N-(6-[biotinamido]hexyl)-3'-(2'-pyridyldithio)propionamide (biotin-HPDP) was the critical concentration to prevent the nonspecific aggregation of gold nanoparticles in this system. For sensing streptavidin target molecules by QCM, biotinylated BSA was absorbed on the Au surface of the QCM electrode and subsequent coupling of the target streptavidin to the biotin in the sensing interface followed. Amplification of the sensing process was performed by the interaction of the target streptavidin on the sensing surface with gold nanoparticles modified with 10 microM biotin-HPDP. The biotinylated gold nanoparticles were used as signal amplification probes to improve the detection limit, which was 50 ng/ml, of the streptavidin detection system without signal enhancement, and the calibration curve determined for the net frequency changes showed good linearity over a wide range from 1 ng/ml to 10 microg/ml for the quantitative streptavidin target molecule analysis. In addition, the measured dissipation changes suggested that the layer of biotin-BSA adsorbed on the Au electrode and the streptavidin layer assembled on the biotin-BSA surface were highly compact and rigid. On the other hand, the structure formed by the biotinylated gold nanoparticles on the streptavidin layer was flexible and dissipative, being elongated outward from the sensing surface.  相似文献   

3.
In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N′-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and 1H-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm. 1H-NMR experiments also inferred that the methyl proton of N-isopropylacrylamide appeared three peaks and responded to hydrogen-bonding interaction including polymer chain with water molecular, intramolecular interaction and intermolecular interaction, respectively.  相似文献   

4.
A novel pH- and temperature-sensitive nanocomposite microgel based on linear Poly(acrylic acid) (PAAc) and Poly(N-isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was synthesized by a two-step method. First, PNIPA microgel was prepared via surfactant-free emulsion polymerization by using inorganic clay as a crosslinker, and then AAc monomer was polymerized within the PNIPA microgel. The structure and morphology of the microgel were confirmed by FTIR, WXRD and TEM. The results indicated that the exfoliated clay platelets were dispersed homogeneously in the PNIPA microgels and acted as a multifunctional crosslinker, while the linear PAAc polymer chains incorporated in the PNIPA microgel network to form a semi-interpenetrating polymer network (semi-IPN) structure. The hydrodynamic diameters of the semi-IPN microgels ranged from 360 to 400 nm, which was much smaller than that of the conventional microgel prepared by using N,N′-methylenebis(acrylamide) (MBA) as a chemical crosslinker, the later was about 740 nm. The semi-IPN microgels exhibited good pH- and temperature-sensitivity, which could respond independently to both pH and temperature changes.  相似文献   

5.
The ultimate nature of streptavidin to bind biotin tightly is widely utilized in many solid-phase based applications to provide a universal binding surface for biotinylated molecules. However, the preparation of the streptavidin coatings by passive adsorption may heavily alter the binding properties of native streptavidin and may not result in the best possible capture surface for demanding solid-phase assays. By introducing sulphydryl groups through primary amines in the protein, we have activated and conjugated native streptavidin into larger protein polymers resulting in high local binding density when coated on polystyrene. This thiolated streptavidin formed through chemical modification has improved adsorption properties and biotin binding capability, compared to the native streptavidin. When this thiolated streptavidin is coated on polystyrene, a dense surface is formed, which provides up to 3-fold increase in the biotin binding efficiency and improves the surface stability by minimizing the desorption of the adsorbed protein from the surface during incubation. Furthermore, this high-capacity surface is resistant to harsh chemical treatments, such as denaturing conditions or mild reducing conditions. The improved adsorption properties of the thiolated streptavidin allow the coating process to be performed with shorter incubation times (15 min), still providing enhanced solid-phase properties, compared to a reference streptavidin surface.  相似文献   

6.
制备了一种能固载目标蛋白质, 却没有非特异性蛋白质吸附的高分子涂层. 该涂层是可生物降解的油水两亲性的三嵌段聚合物, 即生物素偶联的聚乙二醇-聚丙交酯-聚赖氨酸共聚物. 将高分子溶解于N,N-二甲基甲酰胺中, 并涂布在预先包被了聚赖氨酸的脱脂玻片基质上, 形成高分子涂层, 在其表面包被一层由明胶和聚N-乙烯基吡咯烷酮组成的封闭剂. 使用酶标免疫分析法, 对高分子涂层表面的生物活性进行评价. 依次将辣根过氧化物酶标记的链亲和素和生物素偶联的小鼠球蛋白抗原和碱性磷酸酯酶标记的马抗小鼠抗体固载在高分子涂层表面上, 通过标记酶与底物作用生色. 分析结果表明, 经过封闭以后, 生物素化的高分子涂层表面能够排斥非特异性的蛋白质; 同时特异性蛋白质之间(如生物素和链亲和素之间、抗原和抗体之间)的相互作用依然保留, 并且固定在表面的蛋白质依然保留其生物活性. 因此生物素化的聚乙二醇-聚丙交酯-聚赖氨酸三嵌段高分子可以作为生物活性材料, 用于蛋白质固载和蛋白质分离及分析.  相似文献   

7.
As shown for biotin lipids (Ref. 1), the formation of perfect 2-D crystalline streptavidin domains can also be observed in the plane of desthiobiotin lipid monolayers. The binding constant of streptavidin with desthiobiotin (Ka = 5·1013 mol−1) is lower than that with biotin (Ka = 1015 mol−1) (Ref. 2). By adding free biotin into the subphase a competitive replacement and a detaching of the streptavidin domains from the desthiobiotin lipid monolayer takes place. Streptavidin domains built at receptor lipid monolayers are still functional. As could be shown, there are two biotin binding sites at each protein molecule that are fully accessible to biotin (Ref. 1). This can be proven by the interaction with biotinylated ferritin and fluoresceinated biotin. Further coupling of an anti-FITC-antibody can proceed and a second protein layer can be formed. Using a bifunctional biotin linker a second crystalline streptavidin layer underneath the first one can be obtained.  相似文献   

8.
Two kinds of streptavidin magnetic particles,namely streptavidin GoldMag particles and streptavidin amino terminal particles were prepared by the methods of physical adsorption and covalent interaction respectively.The streptavidin coated on magnetic particle surface,crucial to many applications,was greatly influenced by the choice of the different buffer.Compared with DynalbeadsM-270 streptavidin, the binding capacity for biotin of different streptavidin magnetic particles was determined by enzyme inhibition method,and the coupling capacity and activity of biotinylated oligonucleotide on their sur- face were also analyzed.The results indicated that the streptavidin GoldMag particle prepared by physical adsorption was stable in STE(NaCl-Tris-EDTA)buffer that was frequently used in nucleic acid hybridization and detection.The streptavidin amino terminal particles prepared by covalent interaction could be used both in STE buffer and PBS(phosphate buffered saline)buffer.The biotin binding ca- pacity for 1 mg of streptavidin GoldMag particles and streptavidin amino terminal particles was 4950 and 5115 pmol respectively.The capacity of biotinylated oligonucleotide(24 bp)coupled on 1 mg of GoldMag and amino terminal magnetic particles was 2839 and 2978 pmol separately.These data were about 6-7 times higher than those of DynabeadsM-270 streptavidin.The hybridization results with FITC-labeled complementary probe on magnetic particle surface demonstrated that the oligonucleotide coupled on streptavidin magnetic particles had high biological activity.  相似文献   

9.
pH-responsive microgels are crosslinked polymer colloids that swell when the pH approaches the pK a of the particles. They have potential application for injectable gels for tissue repair and drug delivery systems. This study focuses on the pH-triggered gelation behaviour of a series of poly (EA/MAA/X) microgels. EA and MAA are ethylacrylate and methacrylic acid. Here, we investigate the effect of crosslinking monomer type (X) on microgel properties. The crosslinking monomers used were poly (ethyleneglycol) dimethacrylate (PEGD), ethyleneglycol dimethacrylate (EGD) and butanediol diacrylate (BDD). The microgel containing PEGD (m-PEGD) is a new system. The microgel containing BDD (m-BDD) was used as a control system. The concentrated microgel dispersions formed physical gels when the pH was increased to 5.3?C6.7, and the polymer volume fractions (? p ) were above about 0.05. Evidence from photon correlation spectroscopy (PCS) and dynamic rheology was presented for abrupt pH-triggered increases, and then decreases of the hydrodynamic diameters for m-PEGD and the microgel prepared using EGD (m-EGD). This appears to be tuneable through crosslinker structure. An unexpected gelation behaviour, which may involve a new gel state for microgels, was found for m-PEGD dispersions. Uniquely, those dispersions formed gels at pH values less than the microgel's pK a . This behaviour was linked to an outer-shell electrostatic repulsive interaction. The data point to a phenomenon, whereby the m-PEGD shells appear to explode at pH values above 7.0. The control microgel prepared, using BDD (m-BDD), did not show any evidence of shell fragmentation at any pH. That microgel has potential as a model pH-responsive microgel system in that the properties measured by PCS and rheology agreed well. To probe that system in more detail, the rheological data for m-BDD was analysed using scaling theory. The variation of the storage modulus (G') with ? p gave a scaling exponent of 2.0.  相似文献   

10.
Polyurethane (PU) acrylate microgels were obtained by emulsion polymerization of self-emulsified PU acrylate terminated by 2-hydroxyethyl methacrylate without any extra emulsifier and crosslinker. Moreover, the PU acrylate was also used as stabilizer and crosslinker to synthesize poly(methyl methacrylate) (PMMA)–PU composite microgels via emulsion polymerization, which provided a new method to synthesize PU microgels and their composite microgels. The kinetics of microgel synthesis was studied by gel permeation chromatography. The dynamic rheological behaviors indicated that a crosslinked structure was formed. The frequency dependency of the loss tangent and complex viscosities showed strong relationships with the microgel structure. Those microgels with rigid PMMA core showed higher ability to slide than the soft PU acrylate microgel, which had influence on the changing of loss tangent with frequency. All the microgels swollen in tetrahydrofuran exhibited high viscosities and strong shear-thinning behaviors. As a sort of flexible microgel, the PU microgel was able to form a coherent film at room temperature, which was distinct from hard microgels.  相似文献   

11.
使用生物分子相互作用分析(Biomolecular interaction analysis,BIA)技术实时监测了在链霉素和素表面层层组装亲和素-生物素化抗体多层膜的过程,结果表明,通过链霉素和素与生物素之间的强亲和作用,能够在表面形成均一的多层膜,并用实时BIA技术求得了每层蛋白质的表面浓度,对于生物素化抗体,单层吸附表面浓度为1.32ng/mm^2;对于链霉亲和素,单层吸附表面浓度为2.93ng/mm^2。同时对蛋白质在表面的排列状态进行了探讨。  相似文献   

12.
Microgels were prepared within reverse micelles via photocrosslinking. Gelation resulted from the [2 + 2] photodimerization reaction of nitrocinnamoyl (NC) groups on multi-arm polyethylene glycol (PEG) or gelatin. Because of the potential for biomedical and chemical applications, immobilization capacity within the microgels was investigated. Quantum dots (QDs), for example, share a similar size scale with proteins and can be physically trapped within the microgels. In addition, the optoelectronic properties of QDs could be utilized for analytical, imaging, and therapeutic purposes. Small molecules and recognition sequences (e.g. biotin) can also be covalently immobilized within the microgel networks through the photodimerization reaction. In the presence of biotin-PEG-NC, the resulting microgels added to streptavidin-coated plates. The microgel properties such as biodegradability and degree of swelling may be engineered for particular applications including targeted monitoring and controlled drug delivery systems.  相似文献   

13.
The enzyme beta-galactosidase has been immobilized through incorporation into a selectively soluble microgel, prepared from DNA, biotinylated peptide nucleic acid (PNA), and the protein avidin. The enzyme was conjugated to avidin, allowing it to be integrated directly into the microgel network. Efficient hydrolysis of a small-molecule substrate occurred at 37 degrees , but cooling and centrifuging led to precipitation of the microgels and product separation. The microgels were then reconstituted by adding fresh buffer and shaking. The enzymatic activity was completely recovered through repeated cycles. This method should be generalizable to a wide variety of other enzymes and substrates.  相似文献   

14.
N-isopropylacrylamide (NIPA) based uniform thermosensitive microgels were synthesized by dispersion polymerization by using relatively hydrophilic crosslinking agents with hydroxyl functionality. Glycerol dimethacrylate (GDMA), pentaerythritol triacrylate (PETA) and pentaerythritol propoxylate triacrylate (PEPTA) were used as crosslinking agents with different hydrophilicities. A protocol was first proposed to determine the crosslinking density distribution in the thermosensitive microgel particles by confocal laser scanning microscopy (CLSM). The microgels were fluorescently labeled by using hydroxyl group of the crosslinking agent. The CLSM observations performed with the microgels synthesized by three different crosslinking agents showed that the crosslinking density exhibited a quadratic decrease with the increasing radial distance in the spherical microgel particles. This structure led to the formation of more loose gel structure on the particle surface with respect to the center. Then the use of hydrophilic crosslinking agents in the dispersion polymerization of NIPA made possible the synthesis of thermosensitive microgels carrying long, flexible and chemically derivatizable (i.e., hydroxyl functionalized) fringes on the surface by a single-stage dispersion polymerization. The microgels with all crosslinking agents exhibited volume phase transition with the increasing temperature. The microgel obtained by the most hydrophilic crosslinking agent, GDMA exhibited higher hydrodynamic diameters in the fully swollen form at low temperatures than those obtained by PETA and PEPTA. Higher hydrodynamic size decrease from fully swollen form to the fully shrunken form was also observed with the same microgel.  相似文献   

15.
Optical sensors for environmental humidity have been constructed from poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgels. The devices were constructed by first depositing a monolithic layer of pNIPAm-co-AAc microgels on a Au-coated glass substrate followed by the addition of another Au layer on top. The resultant assembly showed visual color, and exhibited multipeak reflectance spectra. We found that the thickness of the device's microgel layer depended on environmental humidity, which corresponded to a change in the device's optical properties. Specifically, at low humidity the microgel layer was collapsed, while it absorbed water from the atmosphere (and swelled) as the humidity increased. Additionally, we investigated how the deposition of the hygroscopic polymer poly (diallyldimethylammonium chloride) (pDADMAC) onto the microgel layer (prior to final Au layer deposition) influenced the devices humidity response. We found that the devices were more sensitive to humidity as the number of pDADMAC layers in the device increased. Finally, we evaluated the device performance at various temperatures, and found that the sensitivity was enhanced at low temperature, although the response was more linear at elevated temperature.  相似文献   

16.
In the present work, we describe the properties of a bifunctional redox-labeled bioconjugate at electrode surfaces mediating the electron transfer across the electrode-electrolyte interface. We show that the assembly of ferrocene-labeled streptavidin on biotinylated electrodes results in a reproducible unidirectional current flow in the presence of electron donors in solution. Such rectifying films were built up by spontaneous binding of tetrameric streptavidin molecules to biotin centers immobilized on the electrode surface. Due to the high affinity of biotin to streptavidin, such bifunctional films completely bind any biotinylated compounds. The charge transport between donors in solution and the Au electrode is mediated by the ferrocene moieties, allowing us to develop a molecular rectifier. Our experimental results suggest that such redox-labeled proteins with a high binding capacity constitute a promising alternative to organic compounds used in molecular electronics.  相似文献   

17.
Stimuli-sensitive emulsions stabilized by microgel particles consisting of poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) and being responsive to both pH and temperature have been investigated with respect to the visco-elastic properties of the interfacial layer. Properties of the interfacial layer were probed by means of shear and dilatational rheology as well as by compression isotherms and are related to the microgel packing at the interface as visualized by cryogenic scanning electron microscopy. The corresponding pH dependent emulsion stability is strongly correlated with the visco-elastic properties of the microgel covered oil-water interface. At high pH when the microgels are charged, a structure of partially interconnected microgels is found that provides elastic, soft gel-like interfaces. At low pH, however, the uncharged microgels are densely packed and the interface is rather brittle. Obviously, these pH dependent visco-elastic properties of the microgel layer at the oil-water interface play a determining role in the stability of emulsion droplets and allow us to prepare very stable emulsions when the microgels are charged and to break the emulsion by changing the pH.  相似文献   

18.
We report here the preparation of novel biotinylated glyconanoparticles from well-defined biotinylated glycopolymers and poly(N-isopropylacrylamide) (PNIPAAm) synthesized via the reversible addition fragmentation chain transfer (RAFT) polymerization process. The in situ reduction of the biotinylated glycopolymers, PNIPAAm, poly(ethylene glycol), and HAuCl4 via a photochemical process resulted in the formation of biotinylated gold nanoparticles. The multifunctional biotinylated glyconanoparticles were then evaluated for their bioconjugation toward streptavidin using UV-vis spectroscopy and surface plasmon resonance (SPR). The biotinylated nanoparticles underwent aggregation in the presence of streptavidin as revealed by spectrophotometry, which indicates the accessibility of the biotin for conjugation. These results were further confirmed by surface plasmon resonance even in the case of surface-immobilized streptavidin.  相似文献   

19.
Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel-based etalons are constructed by depositing thin Au layers (mirrors) on either side of a planar microgel layer. When immersed in water, the microgel layer swells and the etalon exhibits visual color. The thermoresponsivity of the pNIPAm-based microgels allows the Au mirror spacing, and hence the device color, to be dynamically modulated. Necessarily, when the mirror spacing is modulated solvent in the microgel layer must be expelled to the surroundings. Previously, we determined that the etalon deswelling kinetics depended critically on the thickness of the Au layer covering the microgels. Here, we report on solvent exchange kinetics. We found that the time required for solvent entry into the microgel layer is much longer than solvent exit. In addition, the rate was found to again depend critically on the thickness of the Au layer covering the microgel layer; thicker Au layers corresponded to slower solvent exchange kinetics.
Figure
Solvent entering poly (N-isopropylacrylamide) microgel-based etalons is significantly slower than solvent exit.  相似文献   

20.
A streptavidin–luciferase fusion protein comprising the thermostable mutant form of firefly luciferase Luciola mingrelica and minimal core streptavidin was constructed. The streptavidin–luciferase fusion was mainly produced in a tetrameric form with high luciferase and biotin‐binding activities. It was shown that fusion has the same Km values for ATP and luciferin and the bioluminescence spectra as initial luciferase. The linear dependence of the bioluminescence signal on the content of the fusion was observed within the range of 10?18–10?13 mol per well. Successful application of obtained fusion in a biospecific bioluminescence assay based on biotin–streptavidin interactions was demonstrated by the example of a specific DNA hybridization analysis. A DNA hybridization analysis for Escherichia coli cells identification was developed using unique for these cells gadB fragment encoding glutamate decarboxylase. The amplified biotinylated GadB fragments were hybridized with the immobilized oligonucleotide probes; then, the biotin in the DNA duplexes was detected using the streptavidin–luciferase fusion protein. To reach the high sensitivity of the assay, we optimized the conditions of the assay. It was shown that the use of Pluronic for plate modification resulted in a significant reduction in the DNA detection limit which finally was 0.4 ng per well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号