首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We have measured quantum states of the solvent-solute system of phthalocyanine in superfluid helium droplets in a high resolution pump-probe experiment. This provides evidence for the attribution of a splitting effect in the emission spectra of phthalocyanine in helium droplets to the relaxation of the first helium layer upon electronic excitation, measured recently by us. Our experimental results are a strong indication for the first helium layer playing a key roll for the solvation of molecules in helium droplets and, thus, for their spectroscopic features.  相似文献   

2.
We report the electronic polarization spectroscopy of two metal phthalocyanine chloride compounds (MPcCl, M=Al,Ga) embedded in superfluid helium droplets and oriented in a dc electric field. For both compounds, the laser induced fluorescence spectra show preference for perpendicular excitation relative to the orientation field. This result indicates that the permanent dipoles of both compounds are predominantly perpendicular to the transition dipole. Since the permanent dipole derives from the metal chloride, while the transition dipole derives from the phthalocyanine chromophore, in the plane of phthalocyanine, this qualitative result is not surprising. However, quantitative modeling reveals that this intuitive model is inadequate and that the transition dipole might have tilted away from the molecular plane of phthalocyanine. The out of plane component of the transition dipole amounts to approximately 10% if the permanent dipole is assumed to be approximately 4 debye. The origin for this tilt is puzzling, and we tentatively attribute it to the transition of nonbonding orbitals, either from the chlorine atom or from the bridge nitrogen atom, to the pi* orbitals of the phthalocyanine chromophore. On the other hand, although unlikely, we cannot completely exclude the possibility that both our high level density functional theory calculation and ab initio results severely deviate from reality. The droplet matrix induces redshifts in the origin of the electronic transition and produces discrete phonon wings. Nevertheless, in dc electric fields, all phonon wings and the zero phonon line demonstrate the same dependence on the polarization direction of the excitation laser. Although electronic excitation does couple to the superfluid helium matrix and the resulting phonon wings add complications to the electronic spectrum, this coupling does not affect the direction of the electronic transition dipole. Electronic polarization spectroscopy in superfluid helium droplets is thus still informative in revealing the permanent dipole and its relation relative to the transition dipole.  相似文献   

3.
The spectroscopy of molecules doped into superfluid helium nanodroplets provides valuable information on the process of solvation in superfluid helium. In continuation of an earlier report on emission spectra of various phthalocyanines showing a splitting of all molecular transitions in the range of about 5-12 cm(-1), the emission spectra of tetracene, pentacene, and perylene in superfluid helium droplets are presented. The new spectra and the results obtained for the phthalocyanines are explained by an empirical model which accounts for the existence of different metastable configurations of a nonsuperfluid solvation layer around the guest molecule.  相似文献   

4.
The photoexcitation of NO embedded in superfluid Hen nanodroplets having n approximately 10(4) has been examined. Two-photon excitation prepares electronically excited states (NO(*)), most notably, the embedded analog of the A 2Sigma state of gas phase NO. Vertical excitation to this low Rydberg state is blueshifted and broadened relative to its gas phase counterpart because of the repulsive electron-helium interaction. Transport to the droplet surface is believed to be facile in the superfluid. For example, NO* prefers (energetically) to reside at the droplet surface rather than at the droplet center, in contrast to NO. Photoionization of surface-bound NO* occurs over a significant photon energy range. This yields small cluster ions NO+Hek) with approximately 90% of these clusters having k< or =10. The variation of ion yield with photon energy displays a precipitous change in the region of 24 300-24 400 cm(-1) for all values of k. Possible photoionization mechanisms are discussed and it is suggested that intermediate levels with high-n Rydberg character play a role. This work underscores the important role played by transport in the photophysics of species embedded in the superfluid host.  相似文献   

5.
Within the diffusion Monte Carlo approach, we have determined the structure of isotopically pure and mixed helium droplets doped with one magnesium atom. For pure (4)He clusters, our results confirm those of Mella et al. [J. Chem. Phys. 123, 054328 (2005)] that the impurity experiences a transition from a surface to a bulk location as the number of helium atoms in the droplet increases. Contrarily, for pure (3)He clusters Mg resides in the bulk of the droplet due to the smaller surface tension of this isotope. Results for mixed droplets are presented. We have also obtained the absorption spectrum of Mg around the 3s3p?(1)P(1) ← 3s(2)?(1)S(0) transition.  相似文献   

6.
The photoionization and photoelectron spectroscopy of pure He droplets were investigated at photon energies between 24.6 eV (the ionization energy of He) and 28.0 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, where there is significant production of clusters with more than 10(4) atoms, the photoelectron images are dominated by fast electrons produced via direct ionization, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons from the droplets have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a "dimer model", in which one assumes vertical ionization from two nearest-neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanisms for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core.  相似文献   

7.
Visible absorption spectra of cesium-doped helium nanodroplets between 14,500 and 17,600 cm(-1) were probed by laser-induced fluorescence. A strong absorption band peaking around 16,700 cm(-1) is identified as Cs2 1(a) 3Sigmau+-3 3Sigmag+ transition. A broad unstructured band near 17,520 cm(-1) is assigned as the Cs2 1(X) 1Sigmag+-2 1Sigmau+ transition. Explanations of the observations are discussed on the basis of ab initio potential curves calculated by Spies and Meyer [(unpublished)]. All spectra have been modeled using narrow Frank-Condon windows around the equilibrium internuclear distance of the lowest singlet and triplet states. Many observed absorption peaks of smaller intensities could be identified, some of which may be due to transitions of cesium trimers formed on the droplets.  相似文献   

8.
The solvations of positively and negatively charged model ions in water droplets have been studied using Monte Carlo simulations performed with a polarizable intermolecular potential function model. Special focus has been placed on the position of the ion in the water droplet. It was found that the sign of the ionic charge is of minor importance but an increased ionic charge localizes the ion to the central regions of the droplet, whereas a large polarizability and a large ionic radius favor locations close to the surface of the water droplet.  相似文献   

9.
Experimental and theoretical investigations of the spectroscopy of molecules in superfluid helium droplets provide evidence for the key role of the first helium layer surrounding the dopant molecule in determining the molecule's spectroscopic features. Recent investigations of emission spectra of phthalocyanine in helium droplets revealed a doubling of all transitions. Herein, we present the emission spectra of Mg-phthalocyanine and of phthalocyanine-argon clusters in helium droplets, which confirm the splitting as a general effect of the helium environment. A scheme of levels is deduced from the emission spectra and attributed to quantized states of the first helium layer surrounding the dopant molecule.  相似文献   

10.
The polymer dispersed nematic liquid crystal (LC) with the tilted surface anchoring has been studied. The droplet orientational structures with two point surface defects – boojums and the surface ring defect – are formed within the films. The director tilt angle α = 40° ± 4° at the droplet interface and LC surface anchoring strength Ws ~ 10–6 (J m?2) have been estimated. The bipolar axes within the studied droplets of oblate ellipsoidal form can be randomly oriented are oriented randomly relatively to the ellipsoid axes as opposed to the droplets with homeotropic and tangential anchoring.  相似文献   

11.
Photoelectron spectra of neutral silver trimers, grown in ultracold helium nanodroplets, are recorded after ionization with laser pulses via a strong optical resonance of this species. Varying the photon energy reveals that direct vertical two-photon ionization is hindered by a rapid relaxation into the lower edge of a long-living excited state manifold. An analysis of the ionization threshold of the embedded trimer yields an ionization potential of 5.74+/-0.09 eV consistent with the value found in the gas phase. The asymmetrical form of the electron energy spectrum, which is broadened toward lower kinetic energies, is attributed to the influence of the matrix on the photoionization process. The lifetime of the excited state was measured in a two-color pump-probe experiment to be 5.7+/-0.6 ns.  相似文献   

12.
The laser-induced fluorescence (LIF) excitation spectra of free base phthalocyanine (Pc), Mg-Pc, and Zn-Pc molecules in superfluid helium droplets at T=0.38 K have been studied. The spectra reveal the rich vibronic structure of the S(1)<--S(0) electronic transitions. The band origins of the transitions consist of zero phonon lines accompanied by phonon wings, which originate from simultaneous electronic excitation of the molecule and excitation of the collective modes of the helium surrounding it. The phonon wings have discrete structures suggesting localization of some helium atoms in the neighborhood of the molecules. Zero phonon lines of Mg-Pc and Zn-Pc molecules are split into three components, which are separated by 0.2-0.4 cm(-1). Possible mechanism of splitting involves static or dynamic Jahn-Teller interaction of metal-phthalocyanine molecules in the twofold degenerate S(1)((1)E(u)) state with the helium shell.  相似文献   

13.
The unique conditions forming atomic and molecular complexes and clusters using superfluid helium nanodroplets have opened up an innovative route for studying the physical and chemical properties of matter on the nanoscale. This review summarizes the specific characteristics of the formation of atomic clusters partly generated far from equilibrium in the helium environment. Special emphasis is on the optical response, electronic properties as well as dynamical processes which are mostly affected by the surrounding quantum matrix. Experiments include the optical induced response of isolated cluster systems in helium under quite different excitation conditions ranging from the linear regime up to the violent interaction with a strong laser field leading to Coulomb explosion and the generation of highly charged atomic fragments. The variety of results on the outstanding properties in the quantum size regime highlights the peculiar capabilities of helium nanodroplet isolation spectroscopy.  相似文献   

14.
The inelastic electron interaction (ionization/attachment) with chloroform embedded in helium droplets has been studied utilizing a two-sector field mass spectrometer. Positive mass spectra have been recorded at the electron energy of 70 eV and are compared with previous results in the gas phase and with other systems embedded in helium droplets. Moreover, the negative ion mass spectrum has been recorded at the electron energy of 1.5 eV. Both negative and positive mass spectra show that chloroform clusters are easily formed by embedding single molecules in the helium droplets. Moreover, for anions appearing in the mass spectrum, the ion yield has been determined as function of the electron energy. While no parent anion of chloroform can be observed in the gas phase, the present cluster environment allows the stabilization of the transient negative ion. The influence of the helium droplet upon the ionization or attachment process of the embedded chloroform is discussed.  相似文献   

15.
Helium droplets of approximately 104–108 atoms have been produced in free jet expansions of liquid helium through a 5 μm nozzle into vacuum. The size distributions of the positively and negatively charged droplets were measured as a function of the electron emission current. A simple model has been developed to describe the charging process and formulas for production of singly and doubly charged droplets were derived. The ratio of the ionization cross section to the geometrical cross section and its dependence on N was obtained. In the experiment single negatively and positively charged droplets were observed. Only for sizes N larger than a certain threshold size N th ≈ 2 × 105 the positively charged droplets were found to be doubly ionized. These observations are in good agreement with the assumption, that the positively charge carriers are stable “snowballs” while the negative droplets contain an excess electron located in the inside within a metastably bound “bubble”. The threshold size N th corresponds to a simple model in which for smaller droplets a positively charged cluster of about 50 atoms is ejected.  相似文献   

16.
The nu(5)+nu(9) spectra of ethylene, C(2)H(4), and its dimer, solvated in helium nanodroplets, have been recorded in the wavelength region near 1.6 microm. The monomer transitions show homogeneous broadening of approximately 0.5 cm(-1), which is interpreted as due to an upper state vibrational relaxation lifetime of approximately 10 ps. Nearly resonant vibrational energy transfer (nu(5)+nu(9)-->2nu(5)) is proposed as the relaxation pathway. The dimer gives a single unresolved absorption feature located 4 cm(-1) to the red of the monomer band origin. The scaling of moments of inertia upon solvation in helium is 1.18 for the monomer and >2.5 for the dimer. In terms of the adiabatic following approximation, this classifies the monomer as a fast rotor and the dimer as a slow rotor.  相似文献   

17.
The study of small clusters is intended to fill the knowledge gap between single atoms and bulk material. He nanodroplets are an ideal matrix for preparing and investigating clusters in a superfluid environment. Alkali-metal atoms are only bound very weakly to their surface by van der Waals forces. Due to the formation process, high-spin states of alkali-metal clusters on He nanodroplets are favorably observed, which is in contrast to the abundance in other preparation processes. Until now, the prevailing opinion was that stable clusters of the heavy alkali-metal atoms, rubidium (Rb) and cesium (Cs) on He nanodroplets, are limited to 5 and 3 atoms, respectively (Schulz et al., Phys. Rev. Lett. 2004, 92, 13401). Here, we present stable complexes of Rb(n)? and Cs(n)? consisting of up to n = 30 atoms, with the detection of large alkali-metal clusters being strongly enhanced by one-photon ionization. Our results also suggest that we monitored both high-spin and low-spin state clusters created on nanodroplets. The van der Waals bound high-spin alkali-metal clusters should show strong magnetic behavior, while low-spin states are predicted to exhibit metallic characteristics. Alkali-metal clusters prepared in these two configurations appear to be ideal candidates for investigating nanosized particles with ferromagnetic or metallic properties.  相似文献   

18.
19.
Here, we measure the solvation structure of fulleride C605- anions in potassium ammonia solution using neutron diffraction. We find a very strong solvation structure consisting of two shells of ammonia densely packed around the anion. The system's structure is driven by the propensity of ammonia molecules to direct one of their hydrogen bonds to the center of the anion while retaining axial hydrogen bonding within the shells. This permits high concentrations of solvent separated fulleride anions.  相似文献   

20.
In a series of experiments devoted to the study of polycyclic aromatic hydrocarbons for astrophysical applications, the S(2)<--S(0) transition of jet-cooled pyrene (C(16)H(10)) at 321 nm has been studied by an absorption technique for the first time. The spectra observed by cavity ring-down spectroscopy closely resemble the excitation spectra obtained earlier by laser-induced fluorescence (LIF) and show the same band clusters arising from the vibronic interaction of S(2) with S(1). We have also investigated pyrene when it was incorporated into 380 mK cold helium droplets. These spectra which were recorded employing LIF and molecular beam depletion spectroscopy are broadened and redshifted by 0.94 nm but retain the essential features of the gas phase spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号