首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A sharp result on global small solutions to the Cauchy problem $$u_t = \Delta u + f\left( {u,Du,D^2 u,u_t } \right)\left( {t > 0} \right),u\left( 0 \right) = u_0 $$ In Rn is obtained under the the assumption thatf is C1+r forr>2/n and ‖u 0‖C2(R n ) +‖u 0‖W 1 2 (R n ) is small. This implies that the assumption thatf is smooth and ‖u 0 ‖W 1 k (R n )+‖u 0‖W 2 k (R n ) is small fork large enough, made in earlier work, is unnecessary.  相似文献   

2.
The asymptotics L k ? (f 2 n ) ?? n min{k+1, p} is obtained for the sequence of Boolean functions $f_2^n \left( {x_1 , \ldots ,x_n } \right) = \mathop \vee \limits_{1 \leqslant i < j \leqslant n}$ for any fixed k, p ?? 1 and growing n, here L k ? (f 2 n ) is the inversion complexity of realization of the function f 2 n by k-self-correcting circuits of functional elements in the basis B = {&, ?}, p is the weight of a reliable invertor.  相似文献   

3.
LetW p (r) ={f:fC r?1[0, 1],f (r?1) abs.cont., ∥f (r) p <∞}, and setB p (r) ={f:fW p (r) ,∥f (r) p ≤1}. We find the exact Kolmogorov, Gel'fand, linear, and Bernsteinn-widths ofB p (r) inL p for allp∈(1, ∞). For the Kolmogorovn-width we show that forn≥r there exists an optimal subspace of splines of degreer?1 withn?r fixed simple knots depending onp.  相似文献   

4.
Оператор Канторович а дляf∈L p(I), I=[0,1], определяе тся соотношением $$P_n (f,x) = (n + 1)\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} x^k (1 - x)^{n - 1} \int\limits_{I_k } {f(t)dt,} $$ гдеI k=[k/(n}+1),(k+1)/(n+ 1)],n∈N. Доказывается, что есл ир>1 иfW p 2 (I), т.е.f абсол ютно непрерывна наI иf″∈L p(I), то $$\left\| {P_n f - f} \right\|_p = O(n^{ - 1} ).$$ Далее, установлено, чт о еслиfL p(I),p>1 и ∥P n f-fр=О(n ?1), тоf∈S, гдеS={ff аб-солютно непрерывна наI, x(1?x)f′(x)=∝ 0 x h(t)dt, гдеh∈L p(I) и ∝ 0 1 h(t)dt=0}. Если жеf∈Lp(I),p>1, то из условия ∥P n(f)?fpL=o(n?1) вытекает, чтоf постоянна почти всюду.  相似文献   

5.
If γ(x)=x+iA(x),tan ?1‖A′‖<ω<π/2,S ω 0 ={z∈C}| |argz|<ω, or, |arg(-z)|<ω} We have proved that if φ is a holomorphic function in S ω 0 and \(\left| {\varphi (z)} \right| \leqslant \frac{C}{{\left| z \right|}}\) , denotingT f (z)= ∫?(z-ζ)f(ζ)dζ, ?fC 0(γ), ?z∈suppf, where Cc(γ) denotes the class of continuous functions with compact supports, then the following two conditions are equivalent:
  1. T can be extended to be a bounded operator on L2(γ);
  2. there exists a function ?1H (S ω 0 ) such that ?′1(z)=?(z)+?(-z), ?z∈S ω 0 ?z∈S w 0 .
  相似文献   

6.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

7.
We study the asymptotic behavior of the eigenvalues the Sturm-Liouville operator Ly = ?y″ + q(x)y with potentials from the Sobolev space W 2 θ?1 , θ ≥ 0, including the nonclassical case θ ∈ [0, 1) in which the potential is a distribution. The results are obtained in new terms. Let s 2k (q) = λ k 1/2 (q) ? k, s 2k?1(q) = μ k 1/2 (q) ? k ? 1/2, where {λ k } 1 and {μ k } 1 are the sequences of eigenvalues of the operator L generated by the Dirichlet and Dirichlet-Neumann boundary conditions, respectively,. We construct special Hilbert spaces t 2 θ such that the mapping F:W 2 θ?1 t 2 θ defined by the equality F(q) = {s n } 1 is well defined for all θ ≥ 0. The main result is as follows: for θ > 0, the mapping F is weakly nonlinear, i.e., can be expressed as F(q) = Uq + Φ(q), where U is the isomorphism of the spaces W 2 θ?1 and t 2 θ , and Φ(q) is a compact mapping. Moreover, we prove the estimate ∥Ф(q)∥τCqθ?1, where the exact value of τ = τ(θ) > θ ? 1 is given and the constant C depends only on the radius of the ball ∥qθ?R, but is independent of the function q varying in this ball.  相似文献   

8.
For the singular operator $$Su = \int_a^b {\frac{{K(x, s) u (s)}}{{s - x}}} ds$$ invariant weight spacesλ α β , p (u(x)∈λ α β , p if 10,u (x) ρ (x)∈ H β 0 , 20.‖uL p0)<∞, ρ (x) = (x?a) (b ?x)1+β, ρ0(x)=(b?x)α(p?1), 0<α, β<1,p>1H 0 β is a Hölder space. Multiplicative inequalities of the type of Kh. Sh. Mukhtarov are also obtained.  相似文献   

9.
Let \(f(z): = \sum\nolimits_{j = 0}^\infty {a_j z^J } \) be entire, witha j≠0,j large enough, \(\lim _{J \to \infty } a_{j + 1} /a_J = 0\) , and, for someqC, \(q_j : = a_{j - 1} a_{j + 1} /a_j^2 \to q\) asj→∞. LetE mn(f; r) denote the error in best rational approximation off in the uniform norm on |z‖≤r, by rational functions of type (m, n). We study the behavior ofE mn(f; r) asm and/orn→∞. For example, whenq above is not a root of unity, or whenq is a root of unity, butq m has a certain asymptotic expansion asm→∞, then we show that, for each fixed positive integern, ,m→∞. In particular, this applies to the Mittag-Leffler functions \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /\Gamma (1 + j/\lambda )} \) and to \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /(j!)^{I/\lambda } } \) , λ>0. When |q‖<1, we also handle the diagonal case, showing, for example, that ,n→∞. Under mild additional conditions, we show that we can replace 1+0(1) n by 1+0(1). In all cases we show that the poles of the best approximants approach ∞ asm→∞.  相似文献   

10.
Let (n k ) k≧1 be a lacunary sequence of positive integers, i.e. a sequence satisfying n k+1/n k > q > 1, k ≧ 1, and let f be a “nice” 1-periodic function with ∝ 0 1 f(x) dx = 0. Then the probabilistic behavior of the system (f(n k x)) k≧1 is very similar to the behavior of sequences of i.i.d. random variables. For example, Erd?s and Gál proved in 1955 the following law of the iterated logarithm (LIL) for f(x) = cos 2πx and lacunary $ (n_k )_{k \geqq 1} $ : (1) $$ \mathop {\lim \sup }\limits_{N \to \infty } (2N\log \log N)^{1/2} \sum\limits_{k = 1}^N {f(n_k x)} = \left\| f \right\|_2 $$ for almost all x ∈ (0, 1), where ‖f2 = (∝ 0 1 f(x)2 dx)1/2 is the standard deviation of the random variables f(n k x). If (n k ) k≧1 has certain number-theoretic properties (e.g. n k+1/n k → ∞), a similar LIL holds for a large class of functions f, and the constant on the right-hand side is always ‖f2. For general lacunary (n k ) k≧1 this is not necessarily true: Erd?s and Fortet constructed an example of a trigonometric polynomial f and a lacunary sequence (n k ) k≧1, such that the lim sup in the LIL (1) is not equal to ‖f2 and not even a constant a.e. In this paper we show that the class of possible functions on the right-hand side of (1) can be very large: we give an example of a trigonometric polynomial f such that for any function g(x) with sufficiently small Fourier coefficients there exists a lacunary sequence (n k ) k≧1 such that (1) holds with √‖f 2 2 + g(x) instead of ‖f2 on the right-hand side.  相似文献   

11.
LetG be a compact group andM 1(G) be the convolution semigroup of all Borel probability measures onG with the weak topology. We consider a stationary sequence {μ n } n=?∞ +∞ of random measures μ n n (ω) inM 1(G) and the convolutions $$v_{m,n} (\omega ) = \mu _m (\omega )* \cdots *\mu _{n - 1} (\omega ), m< n$$ and $$\alpha _n^{( + k)} (\omega ) = \frac{1}{k}\sum\limits_{i = 1}^k {v_{n,n + i} (\omega ),} \alpha _n^{( - k)} (\omega ) = \frac{1}{k}\sum\limits_{i = 1}^k {v_{n - i,n} (\omega )} $$ We describe the setsA m + (ω) andA n + (ω) of all limit points ofv m,n(ω) asm→?∞ orn→+∞ and the setA (ω) of its two-sided limit points for typical realizations of {μ n (ω)} n=?∞ +∞ . Using an appropriate random ergodic theorem we study the limit random measures ρ n (±) (ω)=lim k→∞ α n k) (ω).  相似文献   

12.
Let w ?? A ??. In this paper, we introduce weighted-(p, q) atomic Hardy spaces H w p,q (? n ×? m ) for 0 < p ? 1, q >q w and show that the weighted Hardy space H w p (? n × ? m ) defined via Littlewood-Paley square functions coincides with H w p,q (? n × ? m ) for 0 < p ? 1, q > q w . As applications, we get a general principle on the H w p (? n × ? m ) to L w p (? n ×? m ) boundedness and a boundedness criterion for two parameter singular integrals on the weighted Hardy spaces.  相似文献   

13.
Letf εC[?1, 1], ?1<α,β≤0, let $f \in C[ - 1, 1], - 1< \alpha , \beta \leqslant 0$ , letS n α, β (f, x) be a partial Fourier-Jacobi sum of ordern, and let $$\nu _{m, n}^{\alpha , \beta } = \nu _{m, n}^{\alpha , \beta } (f) = \nu _{m, n}^{\alpha , \beta } (f,x) = \frac{1}{{n + 1}}[S_m^{\alpha ,\beta } (f,x) + ... + S_{m + n}^{\alpha ,\beta } (f,x)]$$ be the Vallée-Poussin means for Fourier-Jacobi sums. It was proved that if 0<a≤m/n≤b, then there exists a constantc=c(α, β, a, b) such that ‖ν m, n α, β ‖ ≤c, where ‖ν m, n α, β ‖ is the norm of the operator ν m, n α, β inC[?1,1].  相似文献   

14.
Suppose that H p (E 2n + ) is the Hardy space for the first octant $$E_{2n}^ + = \{ z \in \mathbb{C}^n :\operatorname{Im} z_j > 0, j = 1, \ldots ,n\} $$ and P ? l (f, x), l > 0, is the generalized Abel-Poisson means of a function f ? H p (E 2n + ). In this paper, we prove the inequalities $$C_1 (l,p)\widetilde\omega _l (\varepsilon ,f)_p \leqslant \left\| {f(x) - P_\varepsilon ^l (f,x)} \right\|_p \leqslant C_2 (l,p)\omega _l (\varepsilon ,f)_p ,$$ where $\widetilde\omega _l (\varepsilon ,f)_p $ and ω l (?, f) p are the integral moduli of continuity of lth order. For n = 1 and an integer l, this result was obtained by Soljanik.  相似文献   

15.
Several sharp upper and lower bounds for the ratio of two normal probabilities $\mathbb{P}\Biggl(\,\bigcap_{i=1}^{n}\bigl\{\xi^{(1)}_i\leq \mu_i\bigr\}\Biggr)\Big/\mathbb{P}\Biggl(\,\bigcap_{i=1}^{n}\bigl\{\xi^{(0)}_i\leq \mu_i\bigr\}\Biggr)$ are given in this paper for various cases, where (ξ 1 (0) 2 (0) ,…,ξ n (0) ) and (ξ 1 (1) 2 (1) , …,ξ n (1) ) are standard normal random variables with covariance matrices R 0=(r ij 0 ) and R 1=(r ij 1 ), respectively.  相似文献   

16.
The Turán density π(F) of a family F of k-graphs is the limit as n → ∞ of the maximum edge density of an F-free k-graph on n vertices. Let Π (k) consist of all possible Turán densities and let Π fin (k) ? Π (k) be the set of Turán densities of finite k-graph families. Here we prove that Π fin (k) contains every density obtained from an arbitrary finite construction by optimally blowing it up and using recursion inside the specified set of parts. As an application, we show that Π fin (k) contains an irrational number for each k ≥ 3. Also, we show that Π (k) has cardinality of the continuum. In particular, Π (k) ≠ Π fin (k) .  相似文献   

17.
Let f: M m → ? m+1 be an immersion of an orientable m-dimensional connected smooth manifold M without boundary and assume that ξ is a unit normal field for f. For a real number t the map f : M m → ? m+1 is defined as f (p) = f(p) + (p). It is known that if f is an immersion, then for each pM the number of the focal points on the line segment joining f(p) to f (p) is a constant integer. This constant integer is called the index of the parallel immersion f and clearly the index lies between 0 and m. In case f: $\mathbb{S}^m \to \mathbb{R}^{m + 1} $ is an immersion, we study the presence of a component of index μ in the push-out space Ω(f). If there exists a component with index μ = m in Ω(f) then f is known to be a strictly convex embedding of $\mathbb{S}^m $ . We reveal the structure of Ω(f) when $f(\mathbb{S}^m )$ is convex and nonconvex. We also show that the presence of a component of index μ in Ω(f) enables us to construct a continuous field of tangent planes of dimension μ on $\mathbb{S}^m $ and so we see that for certain values of μ there does not exist a component of index μ in Ω(f).  相似文献   

18.
For a simple polytopeS inR d andp>0 we show that the best polynomial approximationE n(f)p≡En(f)Lp(S) satisfies $$E_n \left( f \right)_p \leqslant C\omega _S^r \left( {f,\frac{1}{n}} \right)p,$$ where ω S r is a measure of smoothness off. This result is the best possible in the sense that a weak-type converse inequality is shown and a realization of ω S r (f,t)p via polynomial approximation is proved.  相似文献   

19.
The paper is devoted to the study of expansions of functions ?, which are holomorphic in a circle Ω around 0, in a series of the form where the given system of functions (fk) k=0 ? has the property that each function fk has a representation as a power series of the form with a 0 (k) = 1. It is the question if and where an expansion of the form (*) holds. We present sufficient conditions for the sequence (a n (k) ) k,n=0 , under which there exists a subset Ω0 of Ω such that for arbitrary ? the expansion (*) holds on Ω0 and the series converges absolutely uniformly on compact subsets of Ω0. The obtained results can be applied to prove expansions of analytic functions in a series of a suitable system of m-fold products of Bessel functions. Expansions of this type have been treated by many authors in special cases, but we are able to state a general expansion theorem.  相似文献   

20.
We study the rate of convergence of expansions of elements in a Hilbert space H into series with regard to a given dictionary D. The primary goal of this paper is to study representations of an element fH by a series f ~ ∑ j=1 c j (f)g j (f), $g_j \left( f \right) \in \mathcal{D}$ . Such a representation involves two sequences: {g j (f)} j=1 and {c j (f) j=1 . In this paper the construction of {g j (f)} j=1 is based on ideas used in greedy-type nonlinear approximation, hence the use of the term greedy expansion. An interesting open problem questions, “What is the best possible rate of convergence of greedy expansions for fA 1(D)?” Previously it was believed that the rate of convergence was slower than $m^{ - \tfrac{1} {4}}$ . The qualitative result of this paper is that the best possible rate of convergence of greedy expansions for $f \in A_1 \left( \mathcal{D} \right)$ is faster than $m^{ - \tfrac{1} {4}}$ . In fact, we prove it is faster than $m^{ - \tfrac{2} {7}}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号