首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gramicidin A is a natural peptide, which shows high antimicrobial activity to Gram‐positive bacteria. However, the hemolytic toxicity prevents its therapeutic usage. We demonstrated that by simply removing the formyl group at the N terminus, the hemolytic toxicity of the peptide could be obviously decreased. The deformylated gramicidin A ( 1 ) could efficiently insert into the lipid bilayer to form transmembrane channels. The peptide can also selectively insert into the membrane of Gram‐positive bacteria but not that of erythrocytes, leading to its high antimicrobial activity and very low hemolytic toxicity. The derivation of 1 could be achieved by decoration at the terminal NH2 group, which also produced peptides showing high activity and low hemolytic toxicity. This derivation method provided us with an efficient strategy to build a library for future activity and cytotoxicity screening in vitro and in vivo.  相似文献   

2.
3.
The rapid and sensitive classification of bacteria is the first step of bacterial community research and the treatment of infection. Herein, a fluorescent probe BacGO is presented, which shows the best universal selectivity for Gram‐positive bacteria among known probes with a minimum staining procedure for sample detection and enrichment of the live bacteria. BacGO could also be used to assess of the Gram status in the bacterial community from wastewater sludge. Furthermore, BacGO could sensitively and selectively detect a Gram‐positive bacterial infection, not only in vitro but also using an in vivo keratitis mouse model. BacGO provides an unprecedented research tool for the study of dynamic bacterial communities and for clinical application.  相似文献   

4.
Membrane channels span the cellular lipid bilayers to transport ions and molecules into cells with sophisticated properties including high efficiency and selectivity. It is of particular biological importance in developing biomimetic transmembrane channels with unique functions by means of chemically synthetic strategies. An artificial unimolecular transmembrane channel using pore‐containing helical macromolecules is reported. The self‐folding, shape‐persistent, pore‐containing helical macromolecules are able to span the lipid bilayer, and thus result in extraordinary channel stability and high transporting efficiency for protons and cations. The lifetime of this artificial unimolecular channel in the lipid bilayer membrane is impressively long, rivaling those of natural protein channels. Natural channel mimics designed by helically folded polymeric scaffolds will display robust and versatile transport‐related properties at single‐molecule level.  相似文献   

5.
The application of antimicrobial peptides (AMPs) is largely hindered by their non‐specific toxicity against mammalian cells, which is usually associated with helical structure, hydrophobicity, and charge density. A random coil‐to‐helix transition mechanism has now been introduced into the design of AMPs, minimizing the toxicity against mammalian cells while maintaining high antimicrobial activity. By incorporating anionic phosphorylated tyrosine into the cationic polypeptide, the helical structure of AMPs was distorted owing to the side‐chain charge interaction. Together with the decreased charge density, the AMPs exhibited inhibited toxicity against mammalian cells. At the infectious site, the AMPs can be activated by bacterial phosphatase to restore the helical structure, thus contributing to strong membrane disruptive capability and potent antimicrobial activity. This bacteria‐activated system is an effective strategy to enhance the therapeutic selectivity of AMPs.  相似文献   

6.
Multi‐drug resistance in Gram‐negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we present an approach using fusion of native outer membrane vesicles (OMVs) into a planar lipid bilayer, allowing characterization of membrane protein channels in their native environment. Two major membrane channels from E. coli, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion surprisingly revealed only single or few channel activities. The asymmetry of the OMVs translates after fusion into the lipid membrane with the lipopolysaccharides (LPS) dominantly present at the side of OMV addition. Compared to the conventional reconstitution method, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution and significantly lower permeation. We suggest using outer membrane vesicles for functional and structural studies of membrane channels in the native membrane.  相似文献   

7.
Two conjugated oligoelectrolytes (COEs), WMG1 and WMG2, were designed with the goal of achieving near infrared absorption and high photothermal conversion efficiency. Specifically, electron‐rich thiophene and electron‐poor benzo[1,2‐c:4,5‐c′]bis[1,2,5]thiadiazole subunits were introduced into the conjugated core to modulate the optical gap and to reduce the fluorescence emission efficiency. WMG1 and WMG2 show absorption maxima at around 800 nm, which favors tissue penetration. Although relatively small in size, WMG1 and WMG2 exhibit photothermal conversion efficiencies of circa 60 % and 54 %, respectively. WMG1 shows dark toxicity to the Gram positive bacterium B. subtilis and good photothermal killing efficiency toward both B. subtilis and Gram negative E. coli , features that demonstrate the promising potential of the COE molecular design for photothermal applications.  相似文献   

8.
Three new artificial transmembrane channel molecules have been designed and synthesized by attaching positively charged Arg‐incorporated tripeptide chains to pillar[5]arene. Fluorescent and patch‐clamp experiments revealed that voltage can drive the molecules to insert into and leave from a lipid bilayer and thus switch on and off the transport of K+ ions. One of the molecules was found to display antimicrobial activity toward Bacillus subtilis with half maximal inhibitory concentration (IC50) of 10 μM which is comparable to that of natural channel‐forming peptide alamethicin.  相似文献   

9.
Photoswitchable bioprobes enable bidirectional control of cell physiology with different wavelengths of light. Many current photoswitches use cytotoxic UV light and are limited by the need for constant illumination owing to thermal relaxation in the dark. Now a photoswitchable tetrafluoroazobenzene(4FAB)‐based ion channel antagonist has been developed that can be efficiently isomerized in two separate optical channels with visible light. Importantly, the metastable cis configuration showed very high stability in the dark over the course of days at room temperature. In neurons, the 4FAB antagonist reversibly blocks voltage‐gated ion channels with violet and green light. Furthermore, photoswitching could also be achieved with two‐photon excitation yielding high spatial resolution. 4FAB probes have the potential to enable long‐term biological studies where both ON and OFF states can be maintained in the absence of irradiation.  相似文献   

10.
An efficient route for the synthesis of novel spiro[indole‐pyrimidine]ones in high to excellent yields has been investigated through one‐pot reactions of phenacylidenetriphenylphosphoranes, oxindoles, and thiourea. Their antibacterial activities were studied against Gram‐positive bacteria and Gram‐negative bacteria using disc diffusion method. The results showed that most of the synthesized compounds are effective against Gram‐positive bacteria.  相似文献   

11.
Polycations, mimicking activity of antibacterial peptides, belong to an important class of molecules investigated as a support or as an alternative to antibiotics. In this work, studies of modified linear amphiphilic statistical polymethyloxazoline (PMOX) and polyethyleneimine copolymers (PMOX_PEI) series are presented. Variation of PEI content in the structure results in controllable changes of polymeric aggregates zeta potential. The structure with the highest positive charge shows the best antimicrobial activity, well visible in tests against model Gram‐positive and Gram‐negative bacteria, fungi, and mycobacterium strains. The polymer toxicity is evaluated with MTT and hemolysis assay as a reference. Quartz crystal microbalance (QCM‐D) is used to investigate interaction between polycations and a model lipid membrane. Polymer activity correlates well with molecular structure, showing that amphiphilic component is altering polymer behavior in contact with the lipid bilayer.  相似文献   

12.
A class of artificial K+ channels formed by pillararene‐cyclodextrin hybrid molecules have been designed and synthesized. These channels efficiently inserted into lipid bilayers and displayed high selectivity for K+ over Na+ in fluorescence and electrophysiological experiments. The cation transport selectivity of the artificial channels is tunable by varying the length of the linkers between pillararene and cyclodexrin. The shortest channel showed specific transmembrane transport preference for K+ over all alkali metal ions (selective sequence: K+ > Cs+ > Rb+ > Na+ > Li+), and is rarely observed for artificial K+ channels. The high selectivity of this artificial channel for K+ over Na+ ensures specific transmembrane translocation of K+, and generated stable membrane potential across lipid bilayers.  相似文献   

13.
Crown ether-based synthetic cation conducting channels called hydraphiles show clear ionophoretic activity in phospholipid vesicles. These compounds are shown to be active against the bacterium E. coli. Disk diffusion assays were performed to assess the toxicity of different hydraphile derivatives. Liquid culture tests were conducted to quantitate the dependence of bacterical activity on channel length. It is proposed that hydraphiles are toxic to bacteria as a result of channel formation in the membrane. The bactericidal activity is found to depend at least on the presence of a functional central relay and proper channel length. It is speculated that hydraphiles insert into the bilayer and disrupt the cell's osmotic balance, leading to cell death.  相似文献   

14.
In this work, the new benzoxazinones and benzoxathiinones were synthesized from reaction of alkyl X‐phenylpropiolates and aminophenol (or 2‐mercaptophenol) in the presence of triphenylphosphine. Their antibacterial activities were studied against Gram‐positive bacteria and Gram‐negative bacteria using the disc diffusion method. The obtained results showed that these compounds are more effective against Gram‐positive bacteria than against Gram‐negative bacteria. Also, evaluation of antioxidant activity of the obtained products showed that they have high to excellent antioxidant activity (79.2–93.6%).  相似文献   

15.
A complete experimental and theoretical study has been carried out for aromatic and quinoidal perylene‐based bridges substituted with bis(diarylamine) and bis(arylimine) groups respectively. The through‐bridge inter‐redox site electronic couplings (VAB) have been calculated for their respective mixed‐valence radical cation and radical anion species. The unusual similitudes of the resulting VAB values for the given structures reveal the intervention of molecular shapes with balanced semi‐quinoidal/semi‐aromatic structures in the charge delocalization. An identical molecular object equally responding to the injection of either positive or negative charges is rare in the field of organic π‐conjugated molecules. However, once probed herein for perylene‐based systems, it can be extrapolated to other π‐conjugated bridges. As a result, this work opens the door to the rational design of true ambipolar bulk and molecular conductors.  相似文献   

16.
We developed a Raman‐compatible chip for isolating microorganisms from complex media. The isolation of bacteria is achieved by using antibodies as capture molecules. Due to the very specific interaction with the targets, this approach is promising for isolation of bacteria even from complex matrices such as body fluids. Our choice of capture molecules also enabled the investigation of samples containing yet unidentified bacteria, as the antibodies can capture a large variety of bacteria based on their analogue cell wall surface structures. The capability of our system is demonstrated for a broad range of different Gram‐positive and Gram‐negative germs. Subsequent identification is done by recording Raman spectra of the bacteria. Further, it is shown that classification with chemometric methods is possible.  相似文献   

17.
We have investigated how doubly selective synthetic mimics of antimicrobial peptides (SMAMPs), which can differentiate not only between bacteria and mammalian cells, but also between Gram‐negative and Gram‐positive bacteria, make the latter distinction. By dye‐leakage experiments on model vesicles and complementary experiments on bacteria, we were able to relate the Gram selectivity to structural differences of these bacteria types. We showed that the double membrane of E. coli rather than the difference in lipid composition between E. coli and S. aureus was responsible for Gram selectivity. The molecular‐weight‐dependent antimicrobial activity of the SMAMPs was shown to be a sieving effect: while the 3000 g mol?1 SMAMP was able to penetrate the peptidoglycan layer of the Gram‐positive S. aureus bacteria, the 50000 g mol?1 SMAMP got stuck and consequently did not have antimicrobial activity.  相似文献   

18.
Self‐assembled crystalline porous organic salts (CPOSs) formed by an acid–base combination and with one‐dimensional polar channels containing water molecules have been synthesized. The water content in the channels of the porous salts plays an important role in the proton conduction performance of the materials. The porous salts described in this study feature high proton conductivity at ambient conditions and can reach as high as 2.2×10−2 S cm−1 at 333 K and under high humid conditions. This is among the best conductivity values reported to date for porous materials, for example, metal–organic frameworks and hydrogen‐bonded organic frameworks. These materials exhibiting permanent porosity represent a group of porous materials and may find interesting applications in proton‐exchange membrane fuel cells.  相似文献   

19.
Concepts leading to single enantiomers of chiral molecules are of crucial importance for many applications, including pharmacology and biotechnology. Recently, mesoporous metal phases encoded with chiral information have been developed. Fine‐tuning of the enantioaffinity of such structures by imposing an electric potential is proposed, which can influence the electrostatic interactions between the chiral metal and the target enantiomer. This allows the binding affinity between the chiral metal and the target enantiomer to be increased, and thus, the discrimination between two enantiomers to be improved. The concept is illustrated by generating chiral encoded metals in a microfluidic channel by reduction of a platinum salt in the presence of a liquid crystal and l ‐tryptophan as a chiral model template. After removal of the template molecules, the modified microchannel retains a pronounced chiral character. The chiral recognition efficiency of the microchannel can be fine‐tuned by applying a suitable potential to the metal phase. This enables the separation of both components of a racemate flowing through the channel. The approach constitutes a promising and complementary strategy in the frame of chiral discrimination technologies.  相似文献   

20.
A membrane‐intercalating conjugated oligoelectrolyte (COE), PTTP , was designed and synthesized with the goal of providing red‐shifted absorption spectra relative to previously synthesized COE analogs. Specifically, electron‐rich and electron‐poor subunits were introduced in the conjugated backbone to modulate the band gap. PTTP exhibits maxima of absorption at 507 nm and of emission at 725 nm. PTTP can also efficiently function to generate singlet oxygen in situ (ΦΔ≈20 %) and has appropriate topology and dimensions to interact with lipid membranes. The resulting rapid membrane insertion and sensitizing ability provide PTTP with a highly efficient antibacterial capability under a low light dose (0.6 J cm−2) toward Gram‐negative bacteria E. coli, making it a remarkably efficient optically mediated antimicrobial agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号