首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general synthesis of the four isomeric N7α‐D ‐, N7β‐D ‐, N9α‐D ‐, and N9β‐D ‐(purin‐2‐amine deoxynucleoside phosphoramidite) building blocks for DNA synthesis is described (Scheme). The syntheses start with methyl 3′,5′‐di‐O‐acetyl‐2′‐deoxy‐D ‐ribofuranoside ( 2 ) as the sugar component and the N2‐acetyl‐protected 6‐chloropurin‐2‐amine 1 as the base precursor. N7‐Selectivity was achieved by kinetic control, and N9‐selectivity by thermodynamic control of the nucleosidation reaction. The two N7‐(purin‐2‐amine deoxynucleosides) were introduced into the center of a decamer DNA duplex, and their pairing preferences were analyzed by UV‐melting curves. Both the N7α‐D ‐ and N7β‐D ‐(purin‐2‐amine nucleotide) units preferentially pair with a guanine base within the Watson‐Crick pairing regime, with ΔTms of −6.7 and −8.7 K, respectively, relative to a C⋅G base pair (Fig. 3 and Table 1). Molecular modeling suggests that, in the former base pair, the purinamine base is rotated into the syn‐arrangement and is able to form three H‐bonds with O(6), N(1), and NH2 of guanine, whereas in the latter base pair, both bases are in the anti‐arrangement with two H‐bonds between the N(3) and NH2 of guanine, and NH2 and N(1) of the purin‐2‐amine base (Fig. 4).  相似文献   

2.
One‐ and two‐dimensional (1‐D and 2‐D) helium lattices have been studied using ab initio RHF/6–31G** computations. Structural, physical and thermochemical properties have been calculated and analyzed for the 1‐D and 2‐D HeN lattices respectively up to N = 50 and N = 36. Asymptotic properties of the 1‐D HeN lattices are obtained by extrapolating N‐dependence properties to large values of N. Analysis of the results show that the bulk per‐atom interaction (binding) energies increase while the optimized interatomic distances (bond lengths) slightly decrease with the increase in size of the 1‐D HeN lattices and both reach their asymptotic values of 0.352 cm?1 and 3.18775 Å, respectively. Between the square and hexagonal (packed) structures of the 2‐D HeN lattices, the latter is more favored. Extrapolated values of the calculated properties, including lattice parameter, binding and zero point energies, heat capacity, and entropy have also been calculated for both 1‐D and 2‐D HeN lattices. The surface densities for monolayer films of helium atoms with square and hexagonal configurations have been calculated to be respectively 9.84 × 1018 and 1.04 × 1019 helium atoms/cm2 which are comparable to the experimental value of 2.4 × 1019 helium atom/m2 well within the typical large and directional error bars of the experiments. Surface effects have been investigated by comparing the packed HeN2‐D lattices with the same value of N but with different geometries (arrangements). This comparison showed that the HeN lattices prefer arrangements with the smallest surface area.  相似文献   

3.
The first results of a study aiming at an efficient preparation of a large variety of 2′‐O‐[(triisopropylsilyl)oxy]methyl(= tom)‐protected ribonucleoside phosphoramidite building blocks containing modified nucleobases are reported. All of the here presented nucleosides have already been incorporated into RNA sequences by several other groups, employing 2′‐O‐tbdms‐ or 2′‐O‐tom‐protected phosphoramidite building blocks (tbdms = (tert‐butyl)dimethylsilyl). We now optimized existing reactions, developed some new and shorter synthetic strategies, and sometimes introduced other nucleobase‐protecting groups. The 2′‐O‐tom, 5′‐O‐(dimethoxytrityl)‐protected ribonucleosides N2‐acetylisocytidine 5 , O2‐(diphenylcarbamoyl)‐N6‐isobutyrylisoguanosine 8 , N6‐isobutyryl‐N2‐(methoxyacetyl)purine‐2,6‐diamine ribonucleoside (= N8‐isobutyryl‐2‐[(methoxyacetyl)amino]adenosine) 11 , 5‐methyluridine 13 , and 5,6‐dihydrouridine 15 were prepared by first introducing the nucleobase protecting groups and the dimethoxytrityl group, respectively, followed by the 2′‐O‐tom group (Scheme 1). The other presented 2′‐O‐tom, 5′‐O‐(dimethoxytrityl)‐protected ribonucleosides inosine 17 , 1‐methylinosine 18 , N6‐isopent‐2‐enyladenosine 21 , N6‐methyladenosine 22 , N6,N6‐dimethyladenosine 23 , 1‐methylguanosine 25 , N2‐methylguanosine 27 , N2,N2‐dimethylguanosine 29 , N6‐(chloroacetyl)‐1‐methyladenosine 32 , N6‐{{{(1S,2R)‐2‐{[(tert‐butyl)dimethylsilyl]oxy}‐1‐{[2‐(4‐nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}}adenosine 34 (derived from L ‐threonine) and N4‐acetyl‐5‐methylcytidine 36 were prepared by nucleobase transformation reactions from standard, already 2′‐O‐tom‐protected ribonucleosides (Schemes 2–4). Finally, all these nucleosides were transformed into the corresponding phosphoramidites 37 – 52 (Scheme 5), which are fully compatible with the assembly and deprotection conditions for standard RNA synthesis based on 2′‐O‐tom‐protected monomeric building blocks.  相似文献   

4.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

5.
The synthesis of two‐dimensional (2D) polymer nanosheets with a well‐defined microporous structure remains challenging in materials science. Here, a new kind of 2D microporous carbonaceous polymer nanosheets was synthesized through polymerization of a very low concentration of 1,4‐dicyanobenzene in molten zinc chloride at 400–500 °C. This type of nanosheets has a thickness in the range of 3–20 nm, well‐defined microporosity, a high surface area (~537 m2 g?1), and a large micropore volume (~0.45 cm3 g?1). The microporous carbonaceous polymer nanosheets exhibit superior CO2 sorption capability (8.14 wt % at 298 K and 1 bar) and a relatively high CO2 selectivity toward N2 (25.6). Starting from different aromatic nitrile monomers, a variety of 2D carbonaceous polymer nanosheets can be obtained showing a certain universality of the ionothermal method reported herein.  相似文献   

6.
The synthesis, structure, and magnetic properties of a polar and magnetic oxynitride MnTaO2N are reported. High‐pressure synthesis at 6 GPa and 1400 °C allows for the stabilization of a high‐density structure containing middle‐to‐late transition metals. Synchrotron X‐ray and neutron diffraction studies revealed that MnTaO2N adopts the LiNbO3‐type structure, with a random distribution of O2? and N3? anions. MnTaO2N with an “orbital‐inactive” Mn2+ ion (d5; S=5/2) exhibits a nontrivial helical spin order at 25 K with a propagation vector of [0,0,δ] (δ≈0.3), which is different from the conventional G‐type order observed in other orbital‐inactive perovskite oxides and LiNbO3‐type oxides. This result suggests the presence of strong frustration because of the heavily tilted MnO4N2 octahedral network combined with the mixed O2?/N3? species that results in a distribution of (super)‐superexchange interactions.  相似文献   

7.
A novel g‐C3N4/MnO2 composite was prepared by in situ deposition of MnO2 on graphitic carbon nitride (g‐C3N4) nanosheets, and its adsorption properties were evaluated for removal of Pb (II) in aqueous. Fourier transform‐infrared, spectrometer scanning electron microscopy and transmission electron microscopy characterization showed the g‐C3N4/MnO2 composite had a two‐dimensional/two‐dimensional (2D/2D) structure with ample active sites. The Brunauer–Emmett–Teller specific surface area of g‐C3N4/MnO2 composites (234.9 m2/g) was 13.5 times larger than that of g‐C3N4 (17.37 m2/g), providing better conditions for adsorption. The adsorption kinetic data were better fitted with the pseudo‐second‐order model. The Langmuir model was more suitable for describing the experimental equilibrium data of g‐C3N4/MnO2, and the maximum adsorption capacity was 204.1 mg/g for Pb (II). The adsorption of g‐C3N4/MnO2 composite for Pb (II) was an endothermic and spontaneous process, and reached adsorption equilibrium rapidly within initial 150 min. This composite was an excellent adsorbent because of its higher adsorption capacity and facile preparation progress.  相似文献   

8.
The synthesis, recrystallization, and X‐ray deterimination of N,N,N‐trimethyl‐5‐[(2,3,5,6‐tetrafluorophenoxy)carbonyl]pyridin‐2‐aminium trifluoromethanesulfonate (PyTFP‐precursor), C15H13F4N2O2+·CF3SO3, is described. This triflate salt precursor is required for the synthesis of 2,3,5,6‐tetrafluorophenyl 6‐[18F]‐fluoronicotinate ([18F]FPyTFP), a prosthetic group used to radiolabel peptides for positron emission tomography (PET), as peptides are increasingly being used as PET‐imaging probes in nuclear medicine. Radiolabeling of peptides is typically done using a `prosthetic group', a small synthon to which the radioisotope is attached in the first step, followed by attachment to the peptide in the second step. During the synthesis of the PyTFP‐precursor, displacement of a Cl atom with trimethylamine gas and anion replacement with a triflate counter‐ion is critical, as incomplete replacement would hinder radioisotopic incorporation of nucleophilic fluorine‐18 and result in diminished radiochemical yields. The structural determination of the PyTFP‐precursor by X‐ray crystallography helped confirm the anion exchange of chloride with triflate.  相似文献   

9.
The synthesis of the N9‐ and N8‐(β‐D ‐2′‐deoxyribonucleosides) 2 and 10 , respectively, of 8‐aza‐7‐deazapurin‐2‐amine (=1H‐pyrazolo[3,4‐d]pyrimidin‐6‐amine) is described. The fluorescence properties and the stability of the N‐glycosylic bond of 2 were determined and compared with those of the 2′‐deoxyribonucleosides 1 and 3 of purin‐2‐amine and 7‐deazapurin‐2‐amine respectively. From the nucleoside 2 , the phosphoramidite 14 was prepared, and oligonucleotides were synthesized. Duplexes containing compound 1 or 2 are slightly less stable than those containing 2′‐deoxyadenosine, while their CD spectra are rather different. The fluorescence of the nucleosides is strongly quenched (>95%) in single‐stranded as well as in duplex DNA. The residual fluorescence was used to determine the melting profiles, which gave Tm values similar to those determined from the UV melting curves.  相似文献   

10.
A simple synthesis of N2‐alkyl‐N3‐[2‐(1,3,4‐oxadiazol‐2‐yl)aryl]benzofuran‐2,3‐diamines 5 via a one‐pot four‐component reaction is described (Scheme 1). A mixture of N‐(isocyanoimino)triphenylphosphorane ( 1 ), a 2‐aminobenzoic acid 2 , a 2‐hydroxybenzaldehyde 3 , and an isocyanide 4 in absolute EtOH at room temperature undergoes a smooth reaction to afford 5 in excellent yields (Table).  相似文献   

11.
The title compounds, namely 2,6‐bis[(1,3‐dimethylimidazolin‐2‐ylidene)amino]pyridinium perchlorate, C15H24N7+·ClO4, (I), and bis{2,6‐bis[(1,3‐dimethylimidazolin‐2‐ylidene)amino]pyridinium} μ‐oxido‐bis[trichloridoiron(III)], (C15H24N7)2[Fe2Cl6O], (II), are structurally unusual examples of the organization of molecular units via base pairing. The cations in salts (I) and (II) are derived from the bisguanidine N2,N6‐bis(1,3‐dimethylimidazolin‐2‐ylidene)pyridine‐2,6‐diamine, which associates in centrosymmetric pairs via two N—H...N hydrogen‐bond interactions. N—H...N bridges are formed between the protonated pyridine N atom and one of the nonprotonated guanidine N atoms, with N...H distances of 2.01 (1)–2.10 (1) Å. Compound (I) contains two crystallographically independent cations and anions per asymmetric unit. One of the perchlorate anions is disordered, while the [Fe2Cl6O]2− anion lies on an inversion centre.  相似文献   

12.
A novel 1D polymeric lead(II) complex containing the first Pb2‐(μ‐N3)2 motif, [Pb(phen)(μ‐N3)(μ‐NO3)]n (phen = 1,10‐phenanthroline), has been synthesized and characterized. The single‐crystal X‐ray data showed the coordination number of Pb2+ ions to be eight (PbN4O4) with the Pb2+ ions having “stereo‐chemically active” electron lone pairs; the coordination sphere is hemidirected. The chains interact with each other via π‐π interactions to create a 3D framework.  相似文献   

13.
Greatly improved zeolite membranes were prepared by using high‐aspect‐ratio zeolite seeds. Slice‐shaped seeds with a high aspect ratio (AR) facilitated growth of thinner continuous SAPO‐34 membranes of much higher quality. These membranes showed N2 permeances as high as (2.87±0.15)×10?7 mol m?2 s?1 Pa?1 at 22 °C while maintaining a decent N2/CH4 selectivity (9–11.2 for equimolar mixture). On the basis of these thinner high‐quality SAPO‐34 membranes, fine‐tuning the local crystal structure by incorporating more silicon further increased the N2 permeance by 1.4 times without sacrificing the N2/CH4 selectivity. We expect that application of large AR zeolite seeds might be a viable strategy to grow thin high‐quality zeolite membranes. In addition, fine‐tuning of the crystal structure by changing the crystal composition might be a feasible way for further improving the separating performance of high‐quality zeolite membranes.  相似文献   

14.
15.
Greatly improved zeolite membranes were prepared by using high‐aspect‐ratio zeolite seeds. Slice‐shaped seeds with a high aspect ratio (AR) facilitated growth of thinner continuous SAPO‐34 membranes of much higher quality. These membranes showed N2 permeances as high as (2.87±0.15)×10−7 mol m−2 s−1 Pa−1 at 22 °C while maintaining a decent N2/CH4 selectivity (9–11.2 for equimolar mixture). On the basis of these thinner high‐quality SAPO‐34 membranes, fine‐tuning the local crystal structure by incorporating more silicon further increased the N2 permeance by 1.4 times without sacrificing the N2/CH4 selectivity. We expect that application of large AR zeolite seeds might be a viable strategy to grow thin high‐quality zeolite membranes. In addition, fine‐tuning of the crystal structure by changing the crystal composition might be a feasible way for further improving the separating performance of high‐quality zeolite membranes.  相似文献   

16.
As a metal‐free nitrogen reduction reaction (NRR) photocatalyst, g‐C3N4 is available from a scalable synthesis at low cost. Importantly, it can be readily functionalized to enhance photocatalytic activities. However, the use of g‐C3N4‐based photocatalysts for the NRR has been questioned because of the elusive mechanism and the involvement of N defects. This work reports the synthesis of a g‐C3N4 photocatalyst modified with cyano groups and intercalated K+ (mCNN), possessing extended visible‐light harvesting capacity and superior photocatalytic NRR activity (NH3 yield: 3.42 mmol g?1 h?1). Experimental and theoretical studies suggest that the ‐C≡N in mCNN can be regenerated through a pathway analogous to Mars van Krevelen process with the aid of the intercalated K+. The results confirm that the regeneration of the cyano group not only enhances photocatalytic activity and sustains the catalytic cycle, but also stabilizes the photocatalyst.  相似文献   

17.
Peptidyl–RNA conjugates have various applications in studying the ribosome and enzymes participating in tRNA‐dependent pathways such as Fem transferases in peptidoglycan synthesis. Herein a convergent synthesis of peptidyl–RNAs based on Huisgen–Sharpless cycloaddition for the final ligation step is developed. Azides and alkynes are introduced into tRNA and UDP‐MurNAc‐pentapeptide, respectively. Synthesis of 2′‐azido RNA helix starts from 2′‐azido‐2′‐deoxyadenosine that is coupled to deoxycytidine by phosphoramidite chemistry. The resulting dinucleotide is deprotected and ligated to a 22‐nt RNA helix mimicking the acceptor arm of Ala‐tRNAAla by T4 RNA ligase. For alkyne UDP‐MurNAc‐pentapeptide, meso‐cystine is enzymatically incorporated into the peptidoglycan precursor and reduced, and L ‐Cys is converted to dehydroalanine with O‐(mesitylenesulfonyl)hydroxylamine. Reaction of but‐3‐yne‐1‐thiol with dehydroalanine affords the alkyne‐containing UDP‐MurNAc‐pentapeptide. The CuI‐catalyzed azide alkyne cycloaddition reaction in the presence of tris[(1‐hydroxypropyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]amine provided the peptidyl‐RNA conjugate, which was tested as an inhibitor of non‐ribosomal FemXWv aminoacyl transferase. The bi‐substrate analogue was found to inhibit FemXWv with an IC50 of (89±9) pM , as both moieties of the peptidyl–RNA conjugate contribute to high‐affinity binding.  相似文献   

18.
The first example of an interpenetrated methyl‐modified MOF‐5 with the formula Zn4O(DMBDC)3(DMF)2, where DMBDC2? is 2,5‐dimethylbenzene‐1,4‐dicarboxylate and DMF is N,N‐dimethylformamide (henceforth denoted as Me2MOF‐5‐int ), namely, poly[tris(μ4‐2,5‐dimethylbenzene‐1,4‐dicarboxylato)bis(N,N‐dimethylformamide)‐μ4‐oxido‐tetrazinc(II)], [Zn4(C10H8O4)3O(C3H7NO)2]n, has been obtained from a solvothermal synthesis of 2,5‐dimethylbenzene‐1,4‐dicarboxylic acid and Zn(NO3)2·6H2O in DMF. A systematic study revealed that the choice of solvent is of critical importance for the synthesis of phase‐pure Me2MOF‐5‐int , which was thoroughly characterized by single‐crystal and powder X‐ray diffraction (PXRD), as well as by gas‐adsorption analyses. The Brunauer–Emmett–Teller surface area of Me2MOF‐5‐int (660 m2 g?1), determined by N2 adsorption, is much lower than that of nonpenetrated Me2MOF‐5 (2420 m2 g?1). However, Me2MOF‐5‐int displays an H2 uptake capacity of 1.26 wt% at 77 K and 1.0 bar, which is comparable to that of non‐interpenetrated Me2MOF‐5 (1.51 wt%).  相似文献   

19.
In the context of Eschenmoser's work on pyranosyl‐RNA (‘p‐RNA’), we investigated the synthesis and base‐pairing properties of the 5‐methylisocytidine derivative. The previously determined clear‐cut restrictions of base‐pairing modes of p‐RNA had led to the expectation that a 5‐methylisocytosine β‐D ‐ribopyranosyl (= D ‐pr(MeisoC)) based (4′ → 2′)‐oligonucleotide would pair inter alia with D ‐pr(isoG) and L ‐pr(G) based oligonucleotides (D ‐pr and L ‐pr = pyranose form of D ‐ and L ‐ribose, resp.). Remarkably, we could not observe pairing with the D ‐pr(isoG) oligonucleotide but only with the L ‐pr(G) oligonucleotide. Our interpretation concludes that this – at first hand surprising – observation is caused by a change in the nucleosidic torsion angle specific for isoC.  相似文献   

20.
Electrolytic ammonia synthesis from nitrogen at ambient conditions is appearing as a promising alternative to the Haber‐Bosch process which is consuming high energy and emitting CO2. Here, a typical MOF material, HKUST‐1 (Cu?BTC, BTC=benzene‐1,3,5‐tricarboxylate), was selected as an electrocatalyst for the reaction of converting N2 to NH3 under ambient conditions. At ?0.75 V vs. reversible hydrogen electrode, it achieves excellent catalytic performance in the electrochemical synthesis of ammonia with high NH3 yield (46.63 μg h?1 mg?1 cat. or 4.66 μg h?1 cm?2) and good Faraday efficiency (2.45%). It is indicated that the good performance of the HKUST‐1 catalyst may originate from the formation of Cu(I). In addition, the catalyst also has good selectivity for N2 to NH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号