首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1‐Dimensional halocuprate(I) chains [(Cu2X4)2–]n (= [(CuX2)]n, X = Cl, Br, I) have been synthesized under hydrothermal conditions through in‐situ reduction of CuIIX2 with FeIIX2 or as phase pure materials through comproportionation of CuIIX2 or CuIIO with Cu0 metal in the presence of the respective aqueous hydrogen halide HX and a templating amine. Chains of trans edge‐sharing tetrahedra are obtained with piperazinium or ethylenediammonium dications, while the 4,4′‐bipyridinium dication gave chains of cis edge‐sharing tetrahedra. Two monoprotonated piperazinium groups act as cationic ligands (Hpipz+) towards copper atoms in a molecular [Cu4(μ‐Br6)(Hpipz)2] cluster. Electrical crystal conductivities of the halocuprate [(Cu2X4)2–]n (= [(CuX2)]n) chains (X = Cl, Br, I) are around 10–8 S · cm–1 at room temperature.  相似文献   

2.
In the polymeric title compound, [CuI(C10H8N4)]n, the CuI atom is in a four‐coordinated tetrahedral geometry, formed by two I atoms and two pyridine N atoms from two different 4,4′‐(diazenediyl)dipyridine (4,4′‐azpy) ligands. Two μ2‐I atoms link two CuI atoms to form a planar rhomboid [Cu2I2] cluster located on an inversion centre, where the distance between two CuI atoms is 2.7781 (15) Å and the Cu—I bond lengths are 2.6290 (13) and 2.7495 (15) Å. The bridging 4,4′‐azpy ligands connect the [Cu2I2] clusters into a two‐dimensional (2‐D) double‐layered grid‐like network [parallel to the (10) plane], with a (4,4)‐connected topology. Two 2‐D grid‐like networks interweave each other by long 4,4′‐azpy bridging ligands to form a dense 2‐D double‐layered network. To the best of our knowledge, this interwoven 2‐D→2‐D network is observed for the first time in [Cu2I2]–organic compounds.  相似文献   

3.
The complexes [Cu2Br4]2?, [Cu2I4]2?, [Cu2I2Br2]2?, [Cu2I3Cl]2?, [Ag2Cl4]2? have been characterized as their isomorphous bis(triphenylphosphoranylidene)ammonium ([Ph3PNPPh3]+ = PNP+) salts by single crystal structural determinations. All anions show the centrosymmetric doubly halogen‐bridged forms [XM(μ‐X)2MX]2? with three‐coordinate metal atoms that have been observed in [M2X4]2? complexes with other large organic cations. In [Cu2I2Br2]2? the iodide ligands occupy the bridging positions and the bromide the terminal positions, while in [Cu2I3Cl]2?, obtained in an attempt to prepare [Cu2I2Cl2]2?, two of the iodide ligands occupy the bridging positions with the third iodide and the chloride ligand occupying two statistically disordered terminal positions. In [Ag2Cl4]2? the distortion from ideal trigonal coordination of the metal atom is greater than in the copper complexes, but less than in other previously reported [Ag2Cl4]2? complexes with organic cations. The ν(MX) bands have been assigned in the far‐IR spectra, and confirm previous observations regarding the unexpectedly simple IR spectra of [Cu2X4]2? complexes.  相似文献   

4.
In the organometallic silver(I) supramolecular complex poly[[silver(I)‐μ3‐3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2Sπ} coordination environment. Two unsymmetric multidentate 3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile (L) ligands link two AgI atoms through π–AgI interactions into an organometallic box‐like unit, from which two 3‐cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box‐like building blocks. This results in a novel two‐dimensional network extending in the crystallographic bc plane. These two‐dimensional sheets stack together along the crystallographic a axis to generate parallelogram‐like channels. The methanol solvent molecules and the perchlorate counter‐ions are located in the channels, where they are fixed by intermolecular hydrogen‐bonding interactions. This architecture may provide opportunities for host–guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene‐type multidentate ligand L is a good candidate for the preparation of Cp–AgI‐containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes.  相似文献   

5.
Solvothermal reactions of Cu2(OH)2CO3 with 1,3‐bis(pyridin‐4‐yl)propane (bpp) in the presence of aqueous ammonia in 4‐iodotoluene/CH3CN or 1,4‐diiodobenzene/CH3CN afforded two [Cu2I2]‐based coordination polymers, namely catena‐poly[[[di‐μ‐iodido‐dicopper(I)]‐bis[μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′]] p‐toluidine tetrasolvate], {[Cu2I2(C13H14N2)2]·4C7H9N}n, (I), and the analogous 1,4‐diiodobenzene monosolvate, {[Cu2I2(C13H14N2)2]·C6H4I2}n, (II). The [Cu2I2] unit of (I) lies on a centre of symmetry at the mid‐point of the two I atoms, while that of (II) has a twofold axis running through the I...I line. In (I) and (II), each Cu centre is tetrahedrally coordinated by two μ‐I and two N atoms from two different bpp ligands. Each rhomboid [Cu2I2] unit can be considered as a four‐connecting node linked to the symmetry‐related [Cu2I2] units via two pairs of bpp ligands to form a one‐dimensional double chain along the c axis. The dimensions of the [Cu2I2(bpp)2]2 rings in (I) and (II) are different, which may be due to the presence of different guest solvent molecules in the structures. In (I), one p‐toluidine molecule, derived from an Ullmann coupling reaction of 4‐iodotoluene with ammonia, interacts with the [Cu2I2] cluster fragment through N—H...I hydrogen bonds, while the two p‐toluidine molecules interact via N—H...N hydrogen bonds. In (II), two I atoms of each 1,4‐diiodobenzene molecule are linked to the I atoms of the [Cu2I2] fragments from a neighbouring chain via I...I secondary interactions.  相似文献   

6.
From a predesigned grid, [CuII5CuI4L6] ? (I)2 ? 13 H2O ( 1 ), in which LH2 was a pyrazinyl‐triazolyl‐2,6‐substituted pyridine, we successfully synthesized an extended 3D complex, 1[{CuII5CuI8L6}{μ‐[CuI3(CN)6]}2 ? 2 CH3‐ CN] ( 2 ), that displayed unprecedented coexistence of all the five known coordination geometries of copper. Grid 1 displayed monovalent central metal exchange (CME) of CuI for AgI for the first time, as well as the formation of tri‐iodide in the crystalline state. These systems were investigated for their magnetic properties. Remarkably, grid 1 showed much higher catalytic activity than the Ag‐exchanged product for synthesis of a substituted triazole, 1‐benzyl‐4‐phenyl‐1H‐1,2,3‐triazole.  相似文献   

7.
Poly[[μ4‐4,4′‐bipyridazine‐μ5‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C8H6N4)]·H2O}n, (I), and poly[[aqua‐μ4‐pyridazino[4,5‐d]pyridazine‐μ3‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C6H4N4)(H2O)]·H2O}n, (II), possess three‐ and two‐dimensional polymeric structures, respectively, supported by N‐tetradentate coordination of the organic ligands [Ag—N = 2.208 (3)–2.384 (3) Å] and O‐pentadentate coordination of the sulfate anions [Ag—O = 2.284 (3)–2.700 (2) Å]. Compound (I) is the first structurally examined complex of the new ligand 4,4′‐bipyridazine; it is based upon unprecedented centrosymmetric silver–pyridazine tetramers with tetrahedral AgN2O2 and trigonal–bipyramidal AgN2O3 coordination of two independent AgI ions. Compound (II) adopts a typical dimeric silver–pyridazine motif incorporating two kinds of square‐pyramidal AgN2O3 AgI ions. The structure exhibits short anion–π interactions involving noncoordinated sulfate O atoms [O...π = 3.041 (3) Å].  相似文献   

8.
EPR Spectroscopic Characterization (X‐, Q‐Band) of Monomeric AgII‐ and AuII‐Complexes of the Thiacrownethers [12]aneS4, [16]aneS4, [18]aneS6 and [27]aneS9 The reaction of the prepared AgI complexes of the thiacrownethers [12]aneS4, [16]aneS4, [18]aneS6 and [27]aneS9 with c. H2SO4 as well as the reaction of [AuIIICl4] with [18]aneS6 and [27]aneS9 leads to labile AgII‐ (4d9, 107, 109Ag: I=1/2) and AuII‐ (5d9, 197Au: I=3/2) thiacrownether complexes, respectively, which were characterized by X‐ and Q‐band EPR. The EPR spectra of [AgII([12]anS4)]2+ and [AgII([18]anS6)]2+ were reinvestigated. According to an analysis of the spin‐density distribution only 20 ‐ 25 % is located on the Ag or Au atoms. Most of the spin‐density was found to be on the S donor atoms of the thiacrownethers. The high delocalization of the spin‐density leads certainly to a noticeable reduction of the AgI/AgII redox potential and is considered as being mainly responsible for the easy accessibility of the AgII compounds.  相似文献   

9.
The title complex, [CuCl(C4H8OS)]n, contains infinite spiral (CuS)n chains linked by bridging Cl atoms into layers. The Cl atoms do not form polymeric fragments with CuI, but combine into isolated centrosymmetric Cu2Cl2 units. The compound is non‐isomorphous with the Br‐containing analogue, which contains Cu8S8 rings linked by Br atoms into chains. The O atom of the 1,4‐oxathiane mol­ecule does not realize its coordination abilities in the known copper(I)–halide complexes, while in copper(II)–halide complexes, oxathiane is coordinated via the S and O atoms. This falls into a pattern of the preferred inter­actions, viz. weak acid (CuI atom) with weak base (S atom) and harder acid (CuII atom) with harder base (O atom).  相似文献   

10.
Reaction of biotin {C10H16N2O3S, HL; systematic name: 5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoic acid} with silver acetate and a few drops of aqueous ammonia leads to the deprotonation of the carboxylic acid group and the formation of a neutral chiral two‐dimensional polymer network, poly[[{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)] trihydrate], {[Ag(C10H15N2O3S)]·3H2O}n or {[Ag(L)]·3H2O}n, (I). Here, the AgI cations are pentacoordinate, coordinated by four biotin anions via two S atoms and a ureido O atom, and by two carboxylate O atoms of the same molecule. The reaction of biotin with silver salts of potentially coordinating anions, viz. nitrate and perchlorate, leads to the formation of the chiral one‐dimensional coordination polymers catena‐poly[[bis[nitratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] monohydrate], {[Ag2(NO3)2(C10H16N2O3S)2]·H2O}n or {[Ag2(NO3)2(HL)2]·H2O}n, (II), and catena‐poly[bis[perchloratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}], [Ag2(ClO4)2(C10H16N2O3S)2]n or [Ag2(ClO4)2(HL)2]n, (III), respectively. In (II), the AgI cations are again pentacoordinated by three biotin molecules via two S atoms and a ureido O atom, and by two O atoms of a nitrate anion. In (I), (II) and (III), the AgI cations are bridged by an S atom and are coordinated by the ureido O atom and the O atoms of the anions. The reaction of biotin with silver salts of noncoordinating anions, viz. hexafluoridophosphate (PF6) and hexafluoridoantimonate (SbF6), gave the chiral double‐stranded helical structures catena‐poly[[silver(I)‐bis{μ2‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridophosphate], {[Ag(C10H16N2O3S)2](PF6)}n or {[Ag(HL)2](PF6)}n, (IV), and catena‐poly[[[{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)]‐μ2‐{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridoantimonate], {[Ag(C10H16N2O3S)2](SbF6)}n or {[Ag(HL)2](SbF6)}n, (V), respectively. In (IV), the AgI cations have a tetrahedral coordination environment, coordinated by four biotin molecules via two S atoms, and by two carboxy O atoms of two different molecules. In (V), however, the AgI cations have a trigonal coordination environment, coordinated by three biotin molecules via two S atoms and one carboxy O atom. In (IV) and (V), neither the ureido O atom nor the F atoms of the anion are involved in coordination. Hence, the coordination environment of the AgI cations varies from AgS2O trigonal to AgS2O2 tetrahedral to AgS2O3 square‐pyramidal. The conformation of the valeric acid side chain varies from extended to twisted and this, together with the various anions present, has an influence on the solid‐state structures of the resulting compounds. The various O—H...O and N—H...O hydrogen bonds present result in the formation of chiral two‐ and three‐dimensional networks, which are further stabilized by C—H...X (X = O, F, S) interactions, and by N—H...F interactions for (IV) and (V). Biotin itself has a twisted valeric acid side chain which is involved in an intramolecular C—H...S hydrogen bond. The tetrahydrothiophene ring has an envelope conformation with the S atom as the flap. It is displaced from the mean plane of the four C atoms (plane B) by 0.8789 (6) Å, towards the ureido ring (plane A). Planes A and B are inclined to one another by 58.89 (14)°. In the crystal, molecules are linked via O—H...O and N—H...O hydrogen bonds, enclosing R22(8) loops, forming zigzag chains propagating along [001]. These chains are linked via N—H...O hydrogen bonds, and C—H...S and C—H...O interactions forming a three‐dimensional network. The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering.  相似文献   

11.
The S‐functionalized aminosilane Me2Si(NH‐C6H4‐2‐SPh)2 (H2L) ( 1 ) was prepared from dichlorodimethylsilane and lithiated 2‐(phenylthio)aniline. Treatment of compound 1 with two equivalents of n‐butyllithium led to the dilithium derivative Li2L, which was used in subsequent reactions with MCl (M = Tl, Cu, Ag) to prepare the complexes [Tl2L] ( 2 ), [Cu2Tl2L2] · 2THF ( 3a ), [Cu2Tl2L2(THF)2] ( 3b ), and [Ag4L2(THT)2] ( 4 ) (THT = tetrahydrothiophene). Compound 2 consists of two thallium atoms, which are connected by a L2– ligand to give a puckered Tl2N2 ring with Tl–N distances of 255(1)–268(1) pm. Compounds 3a and 3b are heterobimetallic complexes, which are based on [Cu2L2]2– cores featuring a Cu2N4Si2 ring with linearly coordinated copper atoms [Cu–N: 190.7(3)–192.5(3) pm] and two peripherally attached Tl atoms [Tl–N: 272.7(3)–281.9(3) pm]. The molecular structure of the tetranuclear silver(I) complex 4 is closely related to the structure of compounds 3a and 3b by replacement of the Cu and Tl atoms with Ag atoms. The Ag–N distances are 217.5(3)–245.7(3) pm.  相似文献   

12.
The title compound, [Ag(C7H10N2)2]NO3·2H2O or [Ag(dmap)2]NO3·2H2O, where dmap is 4‐(dimethylamino)pyridine, has a distorted linear coordination geometry around the AgI ion. A novel pattern of water–nitrate hydrogen‐bonded anionic strands is formed in the c direction, with the cationic [Ag(dmap)2]+ monomers trapped between them. The AgI ion and the nitrate group atoms, as well as the water molecules (including the H atoms), are on a crystallographic mirror plane (Wyckoff position 4a). The influence of bulky methyl substituents in position 4 of the 4‐(dimethylamino)pyridine ligand on packing is discussed. The absolute structure was determined unequivocally.  相似文献   

13.
Despite their compositional versatility, most halide double perovskites feature large band gaps. Herein, we describe a strategy for achieving small band gaps in this family of materials. The new double perovskites Cs2AgTlX6 (X=Cl ( 1 ) and Br ( 2 )) have direct band gaps of 2.0 and 0.95 eV, respectively, which are approximately 1 eV lower than those of analogous perovskites. To our knowledge, compound 2 displays the lowest band gap for any known halide perovskite. Unlike in AIBIIX3 perovskites, the band‐gap transition in AI2BB′X6 double perovskites can show substantial metal‐to‐metal charge‐transfer character. This band‐edge orbital composition is used to achieve small band gaps through the selection of energetically aligned B‐ and B′‐site metal frontier orbitals. Calculations reveal a shallow, symmetry‐forbidden region at the band edges for 1 , which results in long (μs) microwave conductivity lifetimes. We further describe a facile self‐doping reaction in 2 through Br2 loss at ambient conditions.  相似文献   

14.
By means of alternating current electrochemical synthesis crystals of [C13H15N2]+2[CuCl2.58Br1.42] ( I ) and [C13H15N2]+[Cu2Cl0.67Br2.33] ( II ) have been obtained and structurally characterized. Compound I crystallizes in the orthorhombic system, space group Fddd, a = 7.828(1) Å, b = 26.402(2) Å, c = 28.595(3) Å, Dc = 1.4995(5) g/cm3, Z = 8, R = 0.067 for 2157 reflections. The CuX42– tetrahedra are connected with the organic cations through an electrostatic interaction. Crystals of II are monoclinic, space group P21/c, a = 9.2293(8) Å, b = 22.1332(9) Å, c = 9.2939(9) Å, β = 118.021(4)°, Dc = 2.1251(5) g/cm3, Z = 4, R = 0.042 for 2858 reflections. A tetrahedral environment of the Cu1 atom involves four halide atoms, whereas Cu2 possesses a trigonal‐pyramidal coordination with the C=C‐bond and three halide atoms.  相似文献   

15.
The asymmetric unit of the title compound, [Ag(NH3)2][Ag(C7H5N2O4)2], comprises half an [Ag(NH3)2]+ cation and half an [Ag(anbz)2] anion (anbz is 2‐amino‐5‐nitrobenzoate). Both AgI ions are located on inversion centres. The cation has a linear coordination geometry with two symmetry‐related ammine ligands. The AgI cation in the anionic part shows a rare four‐coordinate planar geometry completed by two chelating symmetry‐related anbz ligands. Intra‐ and intermolecular N—H...O hydrogen bonds create a slightly undulating two‐dimensional supramolecular sheet. Adjacent sheets are only ca 3.3 Å apart. Ag...O, Ag...N and π–π stacking interactions consolidate the packing of the molecules in the solid state.  相似文献   

16.
Yellow needle‐shaped crystals of the title compound, {[Ag(C30H22N4)][Ag(NO3)2]}n, were obtained by the reaction of AgNO3 and 9,10‐bis(benzimidazol‐1‐ylmethyl)anthracene (L) in a 2:1 ratio. The asymmetric unit consists of two AgI cations, one half L ligand and one nitrate anion. One AgI cation occupies a crystallographic inversion centre and links two N‐atom donors of two distinct L ligands to form an infinite one‐dimensional coordination polymer. The second AgI cation lies on a crystallographic twofold axis and is coordinated by two O‐atom donors of two nitrate anions to form an [Ag(NO3)2] counter‐ion. The polymeric chains are linked into a supramolecular framework via weak Ag...O [3.124 (5) Å] and Ag...π (2.982 Å) interactions (π is the centroid of an outer anthracene benzene ring). The π interactions contain two short Ag...C contacts [2.727 (6) and 2.765 (6) Å], which can be considered to define Ag–η2‐anthracene bonding interactions. In comparison with a previously reported binuclear AgI complex [Du, Hu, Zhang, Zeng & Bu (2008). CrystEngComm, 10 , 1866–1874], this new one‐dimensional coordination polymer was obtained by changing the metal–ligand ratio during the synthesis.  相似文献   

17.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

18.
One of most interesting systems of coordination polymers constructed from the first‐row transition metals is the porous ZnII coordination polymer system, but the numbers of such polymers containing N‐donor linkers are still limited. The title double‐chain‐like ZnII coordination polymer, [Ag2Zn(CN)4(C10H10N2)2]n, presents a one‐dimensional linear coordination polymer structure in which ZnII ions are linked by bridging anionic dicyanidoargentate(I) units along the crystallographic b axis and each ZnII ion is additionally coordinated by a terminal dicyanidoargentate(I) unit and two terminal 1‐benzyl‐1H‐imidazole (BZI) ligands, giving a five‐coordinated ZnII ion. Interestingly, there are strong intermolecular AgI…AgI interactions between terminal and bridging dicyanidoargentate(I) units and C—H…π interactions between the phenyl rings of BZI ligands of adjacent one‐dimensional linear chains, providing a one‐dimensional linear double‐chain‐like structure. The supramolecular three‐dimensional framework is stabilized by C—H…π interactions between the phenyl rings of BZI ligands and by AgI…AgI interactions between adjacent double chains. The photoluminescence properties have been studied.  相似文献   

19.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

20.
The title compound, {[Ag2(C10H14N4)2](ClO4)2}n, is a one‐dimensional coordination polymer formed by AgI atoms linearly bridged by 1,1′‐(butane‐1,4‐diyl)diimidazole molecules. The chains have a helical arrangement and pairs of chains are held together by the rarely reported ligand‐unsupported Ag—Ag interaction [2.966 (1) Å], which results in a double‐helix structure. The double helix contains twisted 24‐membered metallomacrocycles, which are composed of four Ag atoms and two ligands. The Ag atoms lie on twofold axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号