首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two series of a total of ten cocrystals involving 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine with various carboxylic acids have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine unit used for the cocrystals offers two ring N atoms (positions N1 and N3) as proton‐accepting sites. Depending upon the site of protonation, two types of cations are possible [Rajam et al. (2017). Acta Cryst. C 73 , 862–868]. In a parallel arrangement, two series of cocrystals are possible depending upon the hydrogen bonding of the carboxyl group with position N1 or N3. In one series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐bromothiophene‐2‐carboxylic acid (1/1), 1 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐chlorothiophene‐2‐carboxylic acid (1/1), 2 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2,4‐dichlorobenzoic acid (1/1), 3 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐aminobenzoic acid (1/1), 4 , the carboxyl hydroxy group (–OH) is hydrogen bonded to position N1 (O—H…N1) of the corresponding pyrimidine unit (single point supramolecular synthon). The inversion‐related stacked pyrimidines are doubly bridged by the carboxyl groups via N—H…O and O—H…N hydrogen bonds to form a large cage‐like tetrameric unit with an R42(20) graph‐set ring motif. These tetrameric units are further connected via base pairing through a pair of N—H…N hydrogen bonds, generating R22(8) motifs (supramolecular homosynthon). In the other series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐methylthiophene‐2‐carboxylic acid (1/1), 5 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–benzoic acid (1/1), 6 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐methylbenzoic acid (1/1), 7 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐methylbenzoic acid (1/1), 8 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐methylbenzoic acid (1/1), 9 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐aminobenzoic acid (1/1), 10 , the carboxyl group interacts with position N3 and the adjacent 4‐amino group of the corresponding pyrimidine ring via O—H…N and N—H…O hydrogen bonds to generate the robust R22(8) supramolecular heterosynthon. These heterosynthons are further connected by N—H…N hydrogen‐bond interactions in a linear fashion to form a chain‐like arrangement. In cocrystal 1 , a Br…Br halogen bond is present, in cocrystals 2 and 3 , Cl…Cl halogen bonds are present, and in cocrystals 5 , 6 and 7 , Cl…O halogen bonds are present. In all of the ten cocrystals, π–π stacking interactions are observed.  相似文献   

2.
The molecular structure of 7‐amino‐2‐methylsulfanyl‐1,2,4‐triazolo[1,5‐a]pyrimidine‐6‐carboxylic acid is reported in two crystal environments, viz. as the dimethylformamide (DMF) monosolvate, C7H7N5O2S·C3H7NO, (I), and as the monohydrate, C7H7N5O2S·H2O, (II), both at 293 (2) K. The triazolo[1,5‐a]pyrimidine molecule is of interest with respect to the possible biological activity of its coordination compounds. While the DMF solvate exhibits a layered structural arrangement through N...O hydrogen‐bonding interactions, the monohydrate displays a network of intermolecular O...O and N...O hydrogen bonds assisted by cocrystallized water molecules and weak π–π stacking interactions, leading to a different three‐dimensional supramolecular architecture. Based on results from topological analyses of the electron‐density distribution in X—H...O (X = O, N and C) regions, hydrogen‐bonding energies have been estimated from structural information only, enabling the characterization of hydrogen‐bond graph energies.  相似文献   

3.
Possible approaches to synthesis of 5‐methyl‐4‐oxo‐2‐(coumarin‐3‐yl)‐N‐aryl‐3,4‐dihydrothieno[2,3‐d]pyrimidine‐6‐carboxamides 4 have been discussed. It is shown that the preferable approach is cyclization of 2‐iminocoumarin‐3‐carboxamides 1 , utilizing 5‐amino‐3‐methyl‐N2‐arylthiophene‐2,4‐dicarboxamides 2 as binucleophilic reagents. The proposed procedure allowed us to easily obtain 4 in two stages, using common reagents. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:341–346, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20303  相似文献   

4.
The novel coumarin‐3‐carboxamides (=2‐oxo‐2H‐1‐benzopyran‐3‐carboxamides) 5a – 5g containing lipophilic spacers were synthesized through the Ugi‐four‐component reaction (Scheme 1). The reactions of aromatic aldehydes 1 , 4,4′‐oxybis[benzenamine] or 4,4′‐methylenebis[benzenamine] as diamine 2 , coumarin‐3‐carboxylic acid (=2‐oxo‐2H‐benzopyran‐3‐carboxylic acid; 3 ), and alkyl isocyanides 4 lead to the desired substituted coumarin‐3‐carboxamides 5a – 5g at room temperature with high bond‐forming efficiency. These novel coumarin derivatives exhibit brilliant fluorescence at 544 nm in CHCl3.  相似文献   

5.
Some new (S)‐1‐aryl‐N‐(1‐hydroxy‐3‐phenylpropan‐2‐yl)‐5‐methyl‐1 H‐1,2,3‐triazole‐4‐carboxamides 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j have been synthesized and established by 1H and 13C NMR, IR, MS spectra, CHN analyses, and x‐ray diffraction crystallography. The molecular conformation and packing is stabilized by interactions of intermolecular H‐bond O2’‐H2'···O1, O2‐H2···O1’ and intramolecular H‐bond N4’‐H4'N···N3’, N4’‐H4'N···O2’, N4‐H4N···N3, N4‐H4N···O2. The two rings of five numbers were formed by H‐bond in a molecular.  相似文献   

6.
New hydrazinyl pseudo‐peptides have been obtained from Ugi four‐component reaction (4CR). The 5‐hydrazinyl‐5‐oxopentanoic acids used as starting materials were prepared by the reaction of hydrazides with anhydrides. Mild reaction conditions, high atom economy, bond‐forming efficiency, and easy workup are advantages of this approach. The products have four amide bonds and high potential for H‐bonding.  相似文献   

7.
The starting (1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbonohydrazonoyl dicyanide ( 2 ) was used as key intermediate for the synthesis of 3‐amino‐2‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylazo)‐[3‐substituted]‐1‐yl‐acrylonitrile derivatives ( 3 – 10 ). In addition, nitrile derivative 2 reacted with hydrazine hydrate or malononitrile to afford the corresponding 3,5‐diaminopyrazole 11 and enaminonitrile derivative 13 , respectively. On the other hand, compound 3 was subjected to react with malononitrile, acetic anhydride, triethylorthoformate, N,N‐dimethylformamide (DMF)‐dimethylacetal, thiourea, and hydroxylamine hydrchloride to afford antipyrine derivatives 16 – 21 . Moreover, the reaction of enaminonitrile 3 with carbon disulfide in pyridine afforded the pyrimidine derivative 22 , whereas, in NaOH/DMF followed by the addition of dimethyl sulphate afforded methyl carbonodithioate 24 . The reaction of enaminonitrile derivatives 3 – 5 with phenylisothiocyanate afforded the thiopyrimidine derivatives 25a – c . Finally, the enaminonitrile 4 reacted with 3‐(4‐chloro‐phenyl)‐1‐phenyl‐propenone to afford the pyridine derivative 27 . The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 13C‐NMR, 1H–NMR, and MS).  相似文献   

8.
The starting materials pyridine‐2(1H)‐thiones are prepared and reacted with halogen‐containing reagents in ethanolic sodium acetate solution to give the corresponding 2‐S‐alkylpyridines, which cyclized upon their boiling in methanolic sodium methoxide solution at reflux to give the corresponding thieno[2,3‐b]pyridines in excellent yields. Bis (thieno[2,3‐b]pyridine‐2‐carboxamides), incorporating 2,6‐dibromophenoxy moiety, are prepared by the bis‐O‐alkylation of thieno[2,3‐b]pyridine‐2‐carboxamide derivatives. Two synthetic routes are designed to prepare the target molecules pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidin‐4(3H)‐ones, pyrido[3′,2′:4,5]thieno[3,2‐d][1,2,3]triazin‐4(3H)‐ones, and their bis‐analogues using thieno[2,3‐b]pyridine‐2‐carboxamides and their bis‐analogues. The structure of the target molecules is elucidated using elemental analyses as well as spectral data.  相似文献   

9.
5‐Acetyl‐3‐amino‐4‐aryl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides ( 5a,b ) were reacted with triethyl orthoformate or nitrous acid to give the corresponding pyrimidinones 6a,b and triazinones 7a,b . The reaction of 5a,b with acetic anhydride was carried out and its products were identified as a mixture of 8‐acetyl‐9‐aryl‐2,7‐dimethylpyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐4(3H)‐one ( 9a,b ) and related 5‐acetyl‐4‐aryl‐3‐biacetylamino‐6‐methylthieno[2,3‐b]pyridine‐2‐carbonitrile ( 10a,b ). Reaction of 7a with some halocompounds afforded the N‐alkylated triazinones 8a‐c . Chlorination of 6a,b and 9a,b with phosphorus oxychloride produced 4‐chloropyrimidines 11a‐d which were used as precursors for the rest of the target heterocycles. Some of the prepared compounds were tested in vitro for their antimicrobial activities.  相似文献   

10.
New N‐aryl substituted 2‐(α‐naphthyl)‐4‐thiazolidinones were prepared by the cyclocondensation of α‐mercaptoacetic acid and corresponding N‐(α‐naphthyliden)anilines. The same starting materials were utilized to obtain a new series of N‐aryl‐N‐[1‐(α‐naphthyl)but‐3‐enyl]amines, which was synthesized through an addition of the Grignard reagent (allylmagnesium bromide) to the double bond C?N of the aldimines. The antichagasic and trichomonacidal in vitro activity, as well as, the antifungal and cytotoxic properties of some of these compounds were evaluated.  相似文献   

11.
3‐Amino‐4‐aryl‐5‐ethoxycarbonyl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides 3a‐c were prepared from ethyl 4‐aryl‐3‐cyano‐6‐methyl‐2‐thioxo‐1,2‐dihydropyridine‐5‐carbonylates 1a‐c and reacted with some carbonyl compounds to give tetrahydropyridothienopyrimidine derivatives 6a‐c, 7a‐c and 8a‐c , respectively. Treatment of compound 3c with chloroacetyl chloride led to the formation of a next key compound, ethyl 2‐chloromethyl‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 9 . Also, 3‐amino‐2‐benzimidazolylthieno[2,3‐b]pyridine‐5‐carboxylate 5 and 2‐(3′‐aminothieno [2,3‐b]pyridin‐2′‐yl)‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 17 were prepared from 1c. The compounds 5, 9 and 17 were used as good synthons for other pyridothienopyrimidines and pyridothienopyrimidobenzimidazoles as well as for related fused polyheterocyclic systems.  相似文献   

12.
A new and practical α‐monomethylation strategy using an amine‐borane/N,N‐dimethylformamide (R3N‐BH3/DMF) system as the methyl source was developed. This protocol has been found to be effective in the α‐monomethylation of arylacetonitriles and arylacetamides. Mechanistic studies revealed that the formyl group of DMF delivered the carbon and one hydrogen atoms of the methyl group, and R3N‐BH3 donated the remaining two hydrogen atoms. Such a unique reaction pathway enabled controllable assemblies of CDH2‐, CD2H‐, and CD3‐ units using Me2NH‐BH3/d7‐DMF, Me3N‐BD3/DMF and Me3N‐BD3/d7‐DMF systems, respectively. Further application of this method to the facile synthesis of anti‐inflammatory flurbiprofen and its varied deuterium‐labeled derivatives was demonstrated.  相似文献   

13.
Reactions of methyl 2-cyano-3,3-bis(methylthio)acrylate ( 1a ) with carboxamides 2a-g in the presence of sodium hydride in a mixture of benzene and N,N-dimethylacetamide took place displacement with the methylthio group to give the corresponding methyl 3-N-acylamino-2-cyano-3-(methylthio)acrylates 3a-g which were readily converted to the corresponding pyrimidine derivatives at reflux in methanol in good yields. Reactions of 2-cyano-3,3-bis(methylthio)acrylonitrile ( 1b ) with the carboxamides 2a-f gave directly pyrimidine-5-carbonitrile derivatives 7a-f . Ketene dithioacetals 1a,b smoothly reacted with thioamide 2g or urea 2h,i to give the expected pyrimidine derivatives 9,10a,b . Polyfunctionalized pyrimidines, thus obtained, were also used for the synthesis of fused pyrimidine derivatives.  相似文献   

14.
Molecules of 1,3‐dimethyl‐7‐(4‐methylphenyl)pyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C16H15N3O2, (I), are linked by paired C—H...O hydrogen bonds to form centrosymmetric R22(10) dimers, which are linked into chains by a single π–π stacking interaction. A single C—H...O hydrogen bond links the molecules of 7‐(biphenyl‐4‐yl)‐1,3‐dimethylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C21H17N3O2, (II), into C(10) chains, which are weakly linked into sheets by a π–π stacking interaction. In 7‐(4‐fluorophenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C14H10FN3O2, (III), an N—H...O hydrogen bond links the molecules into C(6) chains, which are linked into sheets by a π–π stacking interaction. The molecules of 7‐(4‐methoxyphenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C15H13N3O3, (IV), are also linked into C(6) chains by an N—H...O hydrogen bond, but here the chains are linked into sheets by a combination of two independent C—H...π(arene) hydrogen bonds.  相似文献   

15.
The title compound, 2,4‐diamino‐5‐bromo‐7‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabinofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13BrFN5O3, shows two conformations of the exocyclic C4′—C5′ bond, with the torsion angle γ (O5′—C5′—C4′—C3′) being 170.1 (3)° for conformer 1 (occupancy 0.69) and 60.7 (7)° for conformer 2 (occupancy 0.31). The N‐glycosylic bond exhibits an anti conformation, with χ = −114.8 (4)°. The sugar pucker is N‐type (C3′‐endo; 3T4), with P = 23.3 (4)° and τm = 36.5 (2)°. The compound forms a three‐dimensional network that is stabilized by several intermolecular hydrogen bonds (N—H...O, O—H...N and N—H...Br).  相似文献   

16.
The title compound, [Zn(C9H7N3)2(H2O)4](CF3O3S)2, contains an octahedral [ZnL2(H2O)4]2+ cationic complex with trans geometry (Zn site symmetry ), and each 5‐(3‐pyridyl)pyrimidine (L) ligand is coordinated in a monodentate fashion through the pyridine N atom. In the extended structure, these complexes, with both hydrogen‐bond acceptor (pyrimidine) and donor (H2O) functions, are linked to each other by intermolecular water–pyrimidine O—H...N hydrogen‐bonding interactions, resulting in a double chain along the crystallographic a axis. The trifluoromethanesulfonate anions are integrated into the chains via O—H...O hydrogen bonds between the coordinated water and sulfonate O atoms. These double chains are associated into a novel three‐dimensional network through interchain water–pyrimidine O—H...N hydrogen bonds. The asymmetric ligand plays an important role in constructing this unusual supramolecular structure.  相似文献   

17.
The synthesis of N′‐methyl‐4‐(pyrrolidin‐1‐yl)picolinohydrazide and N′‐methyl‐pyrimidine‐2‐carbohydrazide derivatives ( 5a and 5b ) was carried out. These compounds were used as starting materials to obtain methyl N′‐methylhydrazinecarbodithioates 6a and 6b , which, on reaction with either triethylamine or hydrazine, gave corresponding 1,3,4‐oxadiazioles 7a and 7b or 1,2,4‐triazoles 9a and 9b with the free NH2 group at the N‐4 position, respectively. Compounds 8a – e , particularly containing cyclic amines at N‐4 of the 1,2,4‐triazole ring, were also obtained. Synthesized compounds were tested in vitro for their activity against Mycobacterium tuberculosis. The structure–activity relationship analysis for obtained compounds was done. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:223–230, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21008  相似文献   

18.
Catalytic asymmetric [3+2] cycloadditions of C,N‐cyclic azomethine imines with δ‐substituted allenoates have been developed in the presence of (S)‐Me‐f‐KetalPhos, affording functionalized tetrahydroquinoline frameworks in good yields with high diastereo‐ and good enantioselectivities under mild condition. The substrate scope has been also examined. This is the first time that δ‐substituted allenoates have been applied as a δ,γ‐C?C bond participated C2 synthon in asymmetric synthesis.  相似文献   

19.
A series of novel quinazolin‐4(3H)‐one derivatives were efficiently synthesized starting from isatoic anhydride. First, reaction of isatoic anhydride and amines in H2O at room temperature afforded 2‐aminobenzamides. Then, CuBr/Et3N promoted reaction of 2‐aminobenzamides and different aryl isothiocyanates in DMF at 80° afforded the title compounds in good yield.  相似文献   

20.
The title compound [systematic name: 4‐amino‐5‐fluoro‐7‐(β‐d ‐ribofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine], C11H13FN4O4, exhibits an anti glycosylic bond conformation, with a χ torsion angle of −124.7 (3)°. The furanose moiety shows a twisted C2′‐endo sugar pucker (S‐type), with P = 169.8 (3)° and τm = 38.7 (2)°. The orientation of the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a γ torsion angle of 59.3 (3)°. The nucleobases are stacked head‐to‐head. The extended crystal structure is a three‐dimensional hydrogen‐bond network involving O—H...O, O—H...N and N—H...O hydrogen bonds. The crystal structure of the title nucleoside demonstrates that the C—C bonds nearest the F atom of the pyrrole system are significantly shortened by the electronegative halogen atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号