首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
1,3‐Dehydro‐o‐carborane is a useful synthon for selective cage boron functionalization of o‐carboranes. It reacts readily with alkenes or alkynes to give a variety of cage B(3)‐alkenyl/allenyl o‐carboranes by ene reactions in very high yields and excellent regioselectivity. This can be ascribed to the highly polarized cage C?B multiple bond, which lowers the activation barriers of the ene reaction.  相似文献   

2.
Like the importance of benzyne, witnessed in modern arene chemistry for decades, 1,2‐dehydro‐o‐carborane (o‐carboryne), a three‐dimensional relative of benzyne, has been used as a synthon for generating a wide range of cage, carbon‐functionalized carboranes over the past 20 years. However, the selective B functionalization of the cage still represents a challenging task. Disclosed herein is the first example of 1,3‐dehydro‐o‐carborane featuring a cage C? B bond having multiple bonding characters, and is successfully generated by treatment of 3‐diazonium‐o‐carborane tetrafluoroborate with non‐nucleophilic bases. This presents a new methodology for simultaneous functionalization of both cage carbon and boron vertices.  相似文献   

3.
A palladium‐catalyzed highly selective 3,4‐bifunctionalization of 3‐I‐o‐carborane has been developed, leading to the preparation of 3‐alkenyl‐4‐R‐o‐carboranes (R=alkyl, alkynyl, aryl, allyl, CN, and amido) in high to excellent yields. This protocol combines the sequential activation of cage B(3)?I and B(4)?H bonds by Pd migration from exo‐alkenyl sp2 C to cage B(4), which is driven by thermodynamic force. This represents a brand‐new strategy for selective bifunctionalization of carboranes with two different substituents.  相似文献   

4.
Palladium‐catalyzed intermolecular coupling of o‐carborane with aromatics by direct cage B?H bond activation has been achieved, leading to the synthesis of a series of cage B(4,5)‐diarylated‐o‐carboranes in high yields with excellent regioselectivity. Traceless directing group ‐COOH plays a crucial role for site‐ and di‐selectivity of such intermolecular coupling reaction. A PdII–PdIV–PdII catalytic cycle is proposed to be responsible for the stepwise arylation.  相似文献   

5.
Palladium‐catalyzed direct dialkenylation of cage B(4,5) H bonds in o‐carboranes has been achieved with the help of a carboxylic acid directing group, leading to the preparation of a series of 4,5‐[trans‐(ArCHCH)]2‐ocarboranes in high yields with excellent regioselectivity. The traceless directing group, eliminated during the course of the reaction, is responsible for controlling regioselectivity and dialkenylation. A possible catalytic cycle is proposed, involving a tandem sequence of PdII‐initiated cage B H activation, alkene insertion, β‐H elimination, reductive elimination, and decarboxylation.  相似文献   

6.
A rhodium‐catalyzed hydroxylation of a cage B4?H bond in o‐carboranes with either O2 or air as the oxygen source is described, and serves as a new methodology for the regioselective generation of a series of 4‐OH‐o‐carboranes in a one‐pot process. The use of either O2 or air as both the oxidant and the oxygen source makes this protocol very environmentally friendly and practical.  相似文献   

7.
Two phenyl‐substituted carboranes, 3‐phenyl‐1,2‐dicarba‐closo‐dodecaborane(12), C8H16B10, (I), and 1‐phenyl‐1,7‐dicarba‐closo‐dodecaborane(12), C8H16B10, (II), were found to be isostructural. Comparison of the bond angles at the ipso‐C atoms of the phenyl substituent for (I) and (II) [117.71 (3) and 118.45 (10)°, respectively] indicates that electron donation of the carborane cage for B‐ and C‐substituted carboranes is different.  相似文献   

8.
An unusual 12‐vertex‐closo‐C2B10/12‐vertex‐nido‐C2B10 biscarborane cluster was synthesized through an unprecedented regioselective metal‐free B?H activation by a sterically hindered PIII center under mild conditions accompanied by cage‐opening rearrangement. A combination of the electron‐accepting properties of a carborane cage and steric enforcement of close interatomic contacts represent a new synthetic strategy for the activation of strong B?H bonds in carboranes.  相似文献   

9.
A general method for the oxidative substitution of nido‐carborane (7,8‐C2B9H12?) with N‐heterocycles has been developed by using 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) as an oxidant. This metal‐free B?N coupling strategy, in both inter‐ and intramolecular fashions, gave rise to a wide array of charge‐compensated, boron‐substituted nido‐carboranes in high yields (up to 97 %) with excellent functional‐group tolerance under mild reaction conditions. The reaction mechanism was investigated by density‐functional theory (DFT) calculations. A successive single‐electron transfer (SET), B?H hydrogen‐atom transfer (HAT), and nucleophilic attack pathway is proposed. This method provides a new approach to nitrogen‐containing carboranes with potential applications in medicine and materials.  相似文献   

10.
《化学:亚洲杂志》2017,12(16):2134-2138
Aryl‐substituted o ‐carboranes have shown highly efficient solid‐state emission in previous studies. To demonstrate color tuning of the solid‐state emission in an aryl‐o ‐carborane‐based system, bis‐o ‐carborane‐substituted oligoacenes were synthesized and their properties were systematically investigated. Optical and electrochemical measurements revealed efficient decreases in energy band gaps and lowest unoccupied molecular orbital (LUMO) levels by adding a number of fused benzene rings for the extension of π‐conjugation. As a consequence, bright solid‐state emission was observed in the region from blue to near infrared (NIR). Furthermore, various useful features were obtained from the modified o ‐carboranes as an optical material. The naphthalene derivatives exhibited aggregation‐induced emission (AIE) and almost 100 % quantum efficiency in the crystalline state. Furthermore, it was shown that the tetracene derivative with NIR‐emissive properties had high durability toward photo‐bleaching under UV irradiation.  相似文献   

11.
The chemistry of boron clusters has been dominated by icosahedral carboranes for over half a century. Only in recent years has significant progress been made in the chemistry of supercarboranes (carboranes with more than 12 vertices). A number of CAd (carbon‐atoms‐adjacent) 13‐ and 14‐vertex carboranes, and CAp (carbon‐atoms‐apart) 13‐vertex carboranes as well as their corresponding 14‐ and 15‐vertex metallacarboranes have been successfully prepared and structurally characterized. This breakthrough relied on the use of CAd nido‐carborane dianions as starting materials. These supercarboranes can undergo single‐electron reduction to give stable supercarborane radical monoanions with [2n+3] framework electrons, and electrophilic substitution reaction to afford hexasubstituted supercarboranes. They can react with nucleophiles to offer monocarba‐closo‐dodecaborate monoanions from cage‐carbon extrusion reactions. Their unique chemical properties make the chemistry of supercarboranes distinct from that of their 12‐vertex analogues. These studies open up new possibilities for the development of polyhedral clusters of extraordinary size. This focus review offers an overview of recent advances in this growing research field.  相似文献   

12.
While carboranes with 2 n+2 and 2 n+4 (n=number of skeletal atoms) skeletal electrons (SE) are widely known, little has been reported on carboranes with odd SE numbers. Electrochemical measurements on two‐cage assemblies, where two C‐phenyl‐ortho‐carboranyl groups are linked by a para‐phenylene or a para‐tetrafluorophenylene bridge, revealed two well separated and reversible two‐electron reduction waves indicating formation of stable dianions and tetraanions. The salts of the dianions were isolated by reduction with sodium metal and their unusual structures were determined by X‐ray crystallography. The diamagnetic dianions contain two 2 n+3 SE clusters where each cluster has a notably long carborane C–carborane C distance of ca 2.4 Å. The π conjugation within the phenylene bridge plays an important role in the stabilization of these carboranes with odd SE counts.  相似文献   

13.
Seven derivatives of 1,2‐dicarbadodecaborane (ortho‐carborane, 1,2‐C2B10H12) with a 1,3‐diethyl‐ or 1,3‐diphenyl‐1,3,2‐benzodiazaborolyl group on one cage carbon atom were synthesized and structurally characterized. Six of these compounds showed remarkable low‐energy fluorescence emissions with large Stokes shifts of 15100–20260 cm?1 and quantum yields (ΦF) of up to 65 % in the solid state. The low‐energy fluorescence emission, which was assigned to a charge‐transfer (CT) transition between the cage and the heterocyclic unit, depended on the orientation (torsion angle, ψ) of the diazaborolyl group with respect to the cage C? C bond. In cyclohexane, two compounds exhibited very weak dual fluorescence emissions with Stokes shifts of 15660–18090 cm?1 for the CT bands and 1960–5540 cm?1 for the high‐energy bands, which were assigned to local transitions within the benzodiazaborole units (local excitation, LE), whereas four compounds showed only CT bands with ΦF values between 8–32 %. Two distinct excited singlet‐state (S1) geometries, denoted S1(LE) and S1(CT), were observed computationally for the benzodiazaborolyl‐ortho‐carboranes, the population of which depended on their orientation (ψ). TD‐DFT calculations on these excited state geometries were in accord with their CT and LE emissions. These C‐diazaborolyl‐ortho‐carboranes were viewed as donor–acceptor systems with the diazaborolyl group as the donor and the ortho‐carboranyl group as the acceptor.  相似文献   

14.
A nickel‐catalyzed arylation at the carbon center of o‐carborane cages has been developed, thus leading to the preparation of a series of 1‐aryl‐o‐carboranes and 1,2‐diaryl‐o‐carboranes in high yields upon isolation. This method represents the first example of transition metal catalyzed C,C′‐diarylation by cross‐coupling reactions of o‐carboranyl with aryl iodides.  相似文献   

15.
Photoarylation of iodocarboranes with unactivated arenes/heteroarenes at room temperature has been achieved, for the first time, thus leading to the facile synthesis of a large variety of cage carbon mono(hetero)arylated and di(hetero)arylated o‐carboranes. This work represents a clean, efficient, transition‐metal‐free, and cheap synthesis of functionalized carboranes, which has significant advantages over the known methods.  相似文献   

16.
The efficient o‐carboryne precursor 1‐Li‐2‐OTf‐o‐C2B10H10 reacts with lithium amides at room temperature to give a series of N‐carboranyl amines in moderate to high isolated yields. This reaction is compatible with a broad substrate scope from primary to secondary, alkyl to aryl amines. The reaction mechanism is also proposed on the basis of experimental results and DFT calculations. This represents the first general and efficient method for the synthesis of 1‐NR1R2o‐carboranes.  相似文献   

17.
The synthesis of a series of 1,2‐diamino‐o‐carboranes ( 1 – 4 ) is reported. The molecular structures of these diamino‐o‐carboranes are remarkable as the inner‐cluster C?C bonds are all ultra‐long (162.7–193.1 pm) and vary substantially with small variations in the substituents. The results of quantum mechanical investigations suggest that the origin of the bond elongation is significant in‐plane negative hyperconjugation of lone pairs of the nitrogen substituents with the σ* orbitals of the C?C bonds in o‐carboranes.  相似文献   

18.
o‐Carboryne can undergo α‐C? H bond insertion with tertiary amines, thus affording α‐carboranylated amines in very good regioselectivity and isolated yields. In this process, the nucleophilic addition of tertiary amines to the multiple bond of o‐carboryne generates a zwitterionic intermediate. An intramolecular proton transfer, followed by a nucleophilic attack leads to the formation of the final product. Thus, regioselectivity is highly dependent upon the acidity of α‐C? H proton of tertiary amines. This approach serves as an efficient methodology for the preparation of a series of 1‐aminoalkyl‐o‐carboranes.  相似文献   

19.
《中国化学》2018,36(4):273-279
o‐Carboryne (1,2‐dehydro‐o‐carborane) is a very useful synthon for the synthesis of a variety of carborane‐functionalized molecules. Diels‐Alder reaction of o‐carboryne with furans gave a series of carborane‐fused oxanorbornenes in moderate to high yields using 1‐OTf‐1,2‐C2B10H11 as carboryne precursor. The resultant cycloadducts can undergo hydrogenation, cyclic oxidation, bromination, [4 + 2]/[2 + 2] cycloaddition and nucleophilic ring opening reaction to afford a variety of highly functionalized carboranes that may find applications as useful basic units in medicine and materials science.  相似文献   

20.
The convenient synthesis of original aminobenzyl‐o‐carboranes, which represent a new class of nitrogenated carborane derivatives, is described. These novel compounds have been efficiently prepared starting from commercially available aromatic aldehydes and monosubstituted o‐carboranes via carboranyl alcohols and chlorides as intermediates. The key step of this methodology is a selective nucleophilic amination under mild conditions that allows the formation of the expected amines while limiting the partial deboronation of the carborane cluster. This general strategy has been applied to the preparation of a wide variety of aminobenzyl‐o‐carboranes. The extension of this pathway to the synthesis of enantiopure carborane–amine combinations is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号