首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous retrosynthetic and isotope‐labeling studies have indicated that biosynthesis of the iron guanylylpyridinol (FeGP) cofactor of [Fe]‐hydrogenase requires a methyltransferase. This hypothetical enzyme covalently attaches the methyl group at the 3‐position of the pyridinol ring. We describe the identification of HcgC, a gene product of the hcgA‐G cluster responsible for FeGP cofactor biosynthesis. It acts as an S‐adenosylmethionine (SAM)‐dependent methyltransferase, based on the crystal structures of HcgC and the HcgC/SAM and HcgC/S‐adenosylhomocysteine (SAH) complexes. The pyridinol substrate, 6‐carboxymethyl‐5‐methyl‐4‐hydroxy‐2‐pyridinol, was predicted based on properties of the conserved binding pocket and substrate docking simulations. For verification, the assumed substrate was synthesized and used in a kinetic assay. Mass spectrometry and NMR analysis revealed 6‐carboxymethyl‐3,5‐dimethyl‐4‐hydroxy‐2‐pyridinol as the reaction product, which confirmed the function of HcgC.  相似文献   

2.
3.
4.
5.
S ‐Adenosylmethionine‐dependent methyltransferases (MTs) play a decisive role in the biosynthesis of natural products and in epigenetic processes. MTs catalyze the methylation of heteroatoms and even of carbon atoms, which, in many cases, is a challenging reaction in conventional synthesis. However, C‐MTs are often highly substrate‐specific. Herein, we show that SgvM from Streptomyces griseoviridis features an extended substrate scope with respect to the nucleophile as well as the electrophile. Aside from its physiological substrate 4‐methyl‐2‐oxovalerate, SgvM catalyzes the (di)methylation of pyruvate, 2‐oxobutyrate, 2‐oxovalerate, and phenylpyruvate at the β‐carbon atom. Chiral‐phase HPLC analysis revealed that the methylation of 2‐oxovalerate occurs with R selectivity while the ethylation of 2‐oxobutyrate with S ‐adenosylethionine results in the S enantiomer of 3‐methyl‐2‐oxovalerate. Thus SgvM could be a valuable tool for asymmetric biocatalytic C‐alkylation reactions.  相似文献   

6.
S ‐Adenosylmethionine (SAM) is one of the most common co‐substrates in enzyme‐catalyzed methylation reactions. Most SAM‐dependent reactions proceed through an SN2 mechanism, whereas a subset of them involves radical intermediates for methylating non‐nucleophilic substrates. Herein, we report the characterization and mechanistic investigation of NosN, a class C radical SAM methyltransferase involved in the biosynthesis of the thiopeptide antibiotic nosiheptide. We show that, in contrast to all known SAM‐dependent methyltransferases, NosN does not produce S ‐adenosylhomocysteine (SAH) as a co‐product. Instead, NosN converts SAM into 5′‐methylthioadenosine as a direct methyl donor, employing a radical‐based mechanism for methylation and releasing 5′‐thioadenosine as a co‐product. A series of biochemical and computational studies allowed us to propose a comprehensive mechanism for NosN catalysis, which represents a new paradigm for enzyme‐catalyzed methylation reactions.  相似文献   

7.
8.
9.
10.
The synthetic utility of alkyl‐onium salt compounds is widely recognized in the field of organic chemistry. Among the wide variety of onium salts, quaternary ammonium, phosphonium, and tertiary sulfonium salts have been the most useful compounds in organic syntheses. These compounds have been very useful reagents in the construction of organic building blocks. In addition, onium salts are known as reliable catalysts, which are used to promote important organic transformations by serving as phase‐transfer and ion‐pair catalysts through the activation of nucleophiles. Although phase‐transfer catalysis is a major direction for onium salt catalysis, hydrogen‐bonding catalysis of alkyl‐onium salts, which is promoted via the activation of electrophiles, has recently become a relevant topic in the field of onium salt chemistry. This Minireview introduces new possibilities and future directions for alkyl‐onium salt chemistry based on its use in hydrogen‐bonding catalysis and on its overall utility.  相似文献   

11.
12.
A hydrogen bond acceptor plays an important role in the catalytic cycle of organo‐enamine catalysis. It can effectively influence the rate of reaction through hydrogen bonding interaction with enammonium (N‐protonated enamine intermediate). Our findings are supported by both kinetic experiments and quantum chemical calculations.  相似文献   

13.
Chalcogen bonding is the non‐covalent interaction between Lewis acidic chalcogen substituents and Lewis bases. Herein, we present the first application of dicationic tellurium‐based chalcogen bond donors in the nitro‐Michael reaction between trans‐β‐nitrostyrene and indoles. This also constitutes the first activation of nitro derivatives by chalcogen bonding (and halogen bonding). The catalysts showed rate accelerations of more than a factor of 300 compared to strongly Lewis acidic hydrogen bond donors. Several comparison experiments, titrations, and DFT calculations support a chalcogen‐bonding‐based mode of activation of β‐nitrostyrene.  相似文献   

14.
Pseurotins comprise a family of structurally related Aspergillal natural products having interesting bioactivity. However, little is known about the biosynthetic steps involved in the formation of their complex chemical features. Systematic deletion of the pseurotin biosynthetic genes in A. fumigatus and in vivo and in vitro characterization of the tailoring enzymes to determine the biosynthetic intermediates, and the gene products responsible for the formation of each intermediate, are described. Thus, the main biosynthetic steps leading to the formation of pseurotin A from the predominant precursor, azaspirene, were elucidated. The study revealed the combinatorial nature of the biosynthesis of the pseurotin family of compounds and the intermediates. Most interestingly, we report the first identification of an epoxidase C‐methyltransferase bifunctional fusion protein PsoF which appears to methylate the nascent polyketide backbone carbon atom in trans.  相似文献   

15.
《化学:亚洲杂志》2017,12(8):920-926
A novel perfluoro‐1,4‐phenylenyl 6H ‐indolo[2,3‐b ]quinoxaline derivative ( TFBIQ ) was designed and synthesized by using a C−H direct arylation method. The optoelectrical properties of the obtained TFBIQ were fully characterized by UV/Vis spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and a group of Alq3‐based green organic light‐emitting diodes (OLEDs). Device A, which used 0.5 nm‐thick TFBIQ as the interfacial modification layer, exhibited the five best advantages of device performance including a minimum turn‐on voltage as low as 3.1 V, a maximum luminescence intensity as high as 26564 cd m−2, a highest current density value of 348.9 mA cm−2 at a voltage of 11 V, the smallest efficiency roll‐off, as well as the greatest power efficiency of 1.46 lm W−1 relative to all of the other tested devices with thicker TFBIQ and also 10 nm‐thick MoO3 as hole‐injection layers (HILs). As a promising candidate for an organic HIL material, the as‐prepared TFBIQ exhibited a strong thickness effect on the performance of corresponding OLEDs. Furthermore, the theoretical calculated vertical ionization potential of the fluorinated TFBIQ suggests better anti‐oxidation stability than that of the non‐fluorinated structure.  相似文献   

16.
17.
The improved properties of CdTe nanocrystals (NCs) synthesized by hydrothermal method were introduced. The experimental results indicated that the NCs properties could be dramatically influenced by means of changing Cd‐to‐Te molar ratio (the molar ratio of CdCl2 and NaHTe in the precursor) of the MPA‐capped CdTe NCs. With the increase of the ratio from 2:1 to 10:1, the formation time of near‐infrared‐emitting CdTe NCs was shortened. In particular, high Cd‐to‐Te molar ratio brought about MPA‐capped CdTe NCs of superior radical oxidation‐resistance and photostability. As a result, the optimum ratio was found to be 8:1 or 10:1 in the study in order to efficiently attain stable, water‐dispersed CdTe NCs.  相似文献   

18.
19.
Cooperative π–π interactions and H‐bonding are frequently exploited in supramolecular polymerization; however, close scrutiny of their mutual interplay has been largely unexplored. Herein, we compare the self‐assembly behavior of a series of C2‐ and C3‐symmetrical oligophenyleneethynylenes differing in their amide topology (N‐ or C‐centered). This subtle structural modification brings about drastic changes in their photophysical and supramolecular properties, highlighting the reciprocal impact of H‐bonding vs. preorganization on the evolution and final outcome of supramolecular systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号