首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An inexpensive nickel(II) catalyst and a hydrosilane were used for the efficient reductive defunctionalization of aryl and heteroaryl esters through a decarbonylative pathway. This versatile method could be used for the removal of ester and amide functional groups from various organic molecules. Moreover, a scale‐up experiment and a synthetic application based on the use of a removable carboxylic acid directing group highlight the usefulness of this reaction.  相似文献   

3.
4.
5.
Three O‐fluoroazobenzene‐based molecules were chosen as memory‐active molecules: FAZO‐1 with a D–A2–D symmetric structure, FAZO‐2 with an A1–A2–A1 symmetric structure, and FAZO‐3 with a D–A2–A1 asymmetric structure. Both FAZO‐1 and FAZO‐2 had a lower molecular polarity, whereas FAZO‐3 had a higher polarity. The fabricated indium–tin oxide (ITO)/ FAZO‐1 /Al (Au) and ITO/ FAZO‐2 /Al (Au) memory devices both exhibited volatile static random access memory (SRAM) behavior, whereas the ITO/ FAZO‐3 /Al (Au) device showed nonvolatile ternary write‐once‐read‐many‐times (WORM) behavior. It should be noted that the reproducibility of these devices was considerably high, which is significant for practical application in memory devices. In addition, the different memory performances of the three active materials were determined to be attributable to the stability of electric‐field‐induced charge‐transfer complexes. Therefore, the switching memory behavior could be tuned by adjusting the molecular polarity.  相似文献   

6.
Despite the immense growth in interest in difluoroborate dyes, the nature of the interactions of the boron atom within the N‐BF2‐O kernel is not yet fully understood. Herein, a set of real‐space bonding indicators is used to quantify the electronic characteristics of the dative N?B bond in difluoroborate derivatives. The atoms‐in‐molecules (AIM) partitioning scheme is complemented by the electron localizability indicator (ELI‐D) approach, and both were applied to experimental and theoretical electron‐density distributions (X‐ray constrained wavefunction fitting vs. DFT calculations). Additionally, Fermi orbital analysis was introduced for small DFT models to support and extend the findings for structures that contain BF2.  相似文献   

7.
Neutral mesoionic carbenes (MICs) have emerged as an important class of carbene, however they are found in the free form or ligated to only a few d‐block ions. Unprecedented f‐block MIC complexes [M(N′′)3{CN(Me)C(Me)N(Me)CH}] (M=U, Y, La, Nd; N′′=N(SiMe3)2) are reported. These complexes were prepared by a formal 1,4‐proton migration reaction when the metal triamides [M(N′′)3] were treated with the N‐heterocyclic olefin H2C=C(NMeCH)2, which constitutes a new, general way to prepare MIC complexes. Quantum chemical calculations on the 5f3 uranium(III) complex suggest the presence of a U=C donor‐acceptor bond, composed of a MIC→U σ‐component and a U(5f)→MIC(2p) π‐back‐bond, but for the d0f0 Y and La and 4f3 Nd congeners only MIC→M σ‐bonding is found. Considering the generally negligible π‐acidity of MICs, this is surprising and highlights that greater consideration should possibly be given to recognizing MICs as potential π‐acid ligands when coordinated to strongly reducing metals.  相似文献   

8.
Herein, two asymmetric chiral bent‐core molecules, 3‐[(4‐{[4‐(heptyloxy)benzoyl]oxy}benzoyl)oxy]‐phenyl‐4‐[(4‐{[(1R)‐1‐methylheptyl]oxy}benzoyl)oxy] benzoate (BC7R) and 3‐[(4‐{[4‐(heptyloxy)benzoyl]oxy}benzoyl)oxy]‐phenyl‐4‐[(4‐{[(1S)‐1‐methylheptyl]oxy}benzoyl)oxy] benzoate (BC7S), were synthesized to demonstrate control of the helicity of their self‐assembled hierarchical superstructures. Mirror‐imaged CD spectra showed a split‐type Cotton effect after the formation of self‐assembled aggregates of BC7R and BC7S, thereby suggesting the formation of intermolecular exciton couplets with opposite optical activities. Both twisted and helical ribbons with preferential helicity that corresponded to the twisting character of the intermolecular exciton couplet were found in the aggregates. The formation of helical ribbons was attributed to the merging of twisted ribbons through an increase in width to improve morphological stability. As a result, control of the helicity of hierarchical superstructures from the self‐assembly of bent‐core molecules could be achieved by taking advantage of the transfer of chiral information from the molecular level onto the hierarchical scale.  相似文献   

9.
10.
11.
Microporous vanadosilicates with octahedral VO6 and tetrahedral SiO4 units, better known as AM‐6, have been hydrothermally synthesized with different morphologies by controlling the Na/K molar ratio of the initial gel mixtures. The morphology of the AM‐6 materials changed from bulky cube to nanofiber aggregates as the Na/K molar ratio decreased from 1.9 to 0.2. Raman spectroscopy revealed that the VO3? intermediate species plays an important role in the formation of the nanofiber morphology. The orientation of ‐V‐O‐V‐ chains in nanofiber aggregates was examined by confocal polarized micro‐Raman spectroscopy. It was found that these aggregates are assemblies of short ‐V‐O‐V‐ chains perpendicular to the axis of nanofibers. The obtained AM‐6 nanofibers greatly increase the exposed proportion of V? O terminals, and thus improve the catalytic performance.  相似文献   

12.
13.
In recent years, much interest has been paid to difluoromethylthiolated molecules as the “SCF2” moiety is a key motif in drug and agrochemical research. Consequently, the development of versatile strategies for the selective synthesis of SCF2H‐ and SCF2FG‐containing molecules (FG=functional group) has attracted a lot of attention and inspired the scientific community to design new tools. This Minireview highlights the major progress made in this field. Particularly, methodologies developed for the difluoromethylation of sulfur‐containing molecules and the direct construction of C?SCF2 bonds in various classes of compounds are showcased and discussed.  相似文献   

14.
We report palladium‐catalyzed cross‐coupling reactions of chiral secondary non‐stabilized dialkylzinc reagents, prepared from readily available chiral secondary alkyl iodides, with alkenyl and aryl halides. This method provides α‐chiral alkenes and arenes with very high retention of configuration (dr up to 98:2) and satisfactory overall yields (up to 76 % for 3 reaction steps). The configurational stability of these chiral non‐stabilized dialkylzinc reagents was determined and exceeded several hours at 25 °C. DFT calculations were performed to rationalize the stereoretention during the catalytic cycle. Furthermore, the cross‐coupling reaction was applied in an efficient total synthesis of the sesquiterpenes (S)‐ and (R)‐curcumene with control of the absolute stereochemistry.  相似文献   

15.
The dioxygen reactivity of a series of TMPA‐based copper(I) complexes (TMPA=tris(2‐pyridylmethyl)amine), with and without secondary‐coordination‐sphere hydrogen‐bonding moieties, was studied at ?135 °C in 2‐methyltetrahydrofuran (MeTHF). Kinetic stabilization of the H‐bonded [( TMPA)CuII(O2.?)]+ cupric superoxide species was achieved, and they were characterized by resonance Raman (rR) spectroscopy. The structures and physical properties of [( TMPA)CuII(N3?)]+ azido analogues were compared, and the O2.? reactivity of ligand–CuI complexes when an H‐bonding moiety is replaced by a methyl group was contrasted. A drastic enhancement in the reactivity of the cupric superoxide towards phenolic substrates as well as oxidation of substrates possessing moderate C?H bond‐dissociation energies is observed, correlating with the number and strength of the H‐bonding groups.  相似文献   

16.
17.
18.
N‐Methylacetamide, a model of the peptide unit in proteins, is allowed to interact with CH3SH, CH3SCH3, and CH3SSCH3 as models of S‐containing amino acid residues. All of the minima are located on the ab initio potential energy surface of each heterodimer. Analysis of the forces holding each complex together identifies a variety of different attractive forces, including SH???O, NH???S, CH???O, CH???S, SH???π, and CH???π H‐bonds. Other contributing noncovalent bonds involve charge transfer into σ* and π* antibonds. Whereas some of the H‐bonds are strong enough that they represent the sole attractive force in several dimers, albeit not usually in the global minimum, charge‐transfer‐type noncovalent bonds play only a supporting role. The majority of dimers are bound by a collection of several of these attractive interactions. The SH???O and NH???S H‐bonds are of comparable strength, followed by CH???O and CH???S.  相似文献   

19.
New reactivity of a [Cu(NHC)] (NHC=N‐heterocyclic carbene) catalyst is disclosed for the efficient C?H allylation of polyfluoroarenes using allyl halides in benzene at room temperature. The same catalyst system also promotes an isomerization‐induced alkenylation of initially the generated allyl arenes when the reaction is run in tetrahydrofuran. Significantly, not only electron‐deficient but also electron‐rich (hetero)arenes undergo this double‐bond migration process, thus leading to alkenylated products. The present system features mild reaction conditions, broad scope with respect to the arene substrates and allyl halide reactants, good functional‐group tolerance, and high stereoselectivity.  相似文献   

20.
A photoelectrochemical (PEC) cell can split water into hydrogen and oxygen with the assistance of solar illumination. However, its application is still limited by excessive bulk carrier recombination and sluggish surface oxygen evolution reaction (OER) kinetics. Taking SnS2 as an example, a promising layered optoelectronic semiconductor, Ar plasma treatment strategy was used to introduce a SnS/SnS2 P?N heterojunction and O?S bond near the surface of a SnS2 nanosheet array, simultaneously increasing the separation efficiency of photogenerated electron–hole pairs in the bulk and lowering the OER overpotential at the surface. The onset potential of the plasma‐treated SnS2 nanosheet array shifts negatively to 0.16 V, and the photocurrent density at 1.23 V vs. RHE boosts to 2.15 mA cm?2, which is 7 times that of pristine SnS2. This work demonstrates a facile plasma treatment strategy to modulate the energy band structure and surface chemical states for improved PEC performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号