首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capability to functionalize the interior channels and/or high internal surface areas of mesostructured inorganic–organic or porous inorganic solids with specific organic or inorganic moieties has dramatically expanded the potential applications for these versatile materials in catalysis, separations, optical and opto-electronic devices, drug delivery, sensors, and energy conversion. Key to the widespread application of these materials are the various synthetic schemes that have been developed to provide control over the types of species incorporated and, more importantly, their distributions within the mesostructured hosts. Furthermore, multiple active species can often be independently incorporated and collectively optimized to yield multifunctional properties that widen application prospects. Several recent developments and examples in this rapidly growing field of materials chemistry and engineering are highlighted and discussed.  相似文献   

2.
The thermo-optic characteristics of the transparent glass fabric composite and matrix resin have been investigated. The inorganic–organic hybrid materials modified with sulfur are synthesized as transparent matrix resin with the same refractive index and Abbe number as glass. The optical characteristics of the transparent composite relate to temperature due to the fact that the thermo-optic coefficient (dn/dT) for glass fiber (1.00 × 10−5K−1) is different to that of inorganic–organic hybrid materials (−1.99 × 10−4K−1). As the temperature increases, the transparent composite gradually becomes opaque and hazy due to the increased difference in the refractive index between the glass fiber and the matrix. The change in optical characteristics is reversible, meaning that the transparent composites can be used in for various applications in optical devices.  相似文献   

3.
Two new ionic-pair salts containing an organic dye cation, i.e. New Fuchsin or Pararosaniline cation, with Keggin-type POMs, [SiW12O40]4? and [BW12O40]6?, have been isolated under hydrothermal conditions. [(C22H24N3)4][SiW12O40] (1) and [(C19H18N3)6][BW12O40] (2) have been characterized by elemental analyses, FT-IR and single crystal X-ray crystallography. Both of these complexes have strong absorption in the visible-light range due to the involvement of the organic dye and both show weak fluorescence emission.  相似文献   

4.
5.
Current optical polymeric materials for advanced fiber laser development are susceptible to degradation due to the heat generated in high power usage. A suitable replacement light stripping material was explored to overcome this problem by examining optical and physical properties such as transmission/absorption, refractive index, thermal conductivity, and thermal stability. The synthesis and characterization of two new polyurea/silica ORMOSILs (ORganically MOdified SILicates) suitable for high temperature (up to 300 °C) optical applications are reported herein. A one-pot, room temperature synthesis is based upon commercially available bis-isocyanates and an amino-silane. These materials exhibit the combined traits of both glass and polymer by displaying optical clarity over a wide range of wavelengths stretching from the edge of the UV (250 nm) to well into the NIR (2,000 nm), refractive indices in the visible spectrum (n = 1.50–1.63), thermal conductivities of 0.26 ± 0.09 W/mK (ORMOSIL-A) and 0.27 ± 0.07 W/mK (ORMOSIL-B), and thermal stabilities up to 300 °C. The hybrid materials were found to be easily processed into films but thick casts (>2 mm) were subject to increased rates of cracking and longer curing times. Although this is typical of sol–gel chemistries, the organic constituents of ORMOSILs reduce this effect as compared to purely inorganic sol–gels. The effect of thermal aging on the materials’ properties will also be presented as well as a comparison of these materials and the current state of the art light stripping material.  相似文献   

6.
7.
A DCM derivative, namely 4-Dicyanomethylene-2-methyl-6-{[4′-(N-hydroxyethyl-N-methyl)amino]styryl}-4H-pyran (DCMH), has been synthesized and covalently incorporated into the inorganic silica network as pendants via a sol–gel process. Molecular structures of the resultants are confirmed by elemental analysis, 1H NMR, DSC, TGA, FTIR and UV–Vis spectroscopy. Photoluminescence (PL) spectra shows that the emission of DCMH peaked at 625 nm is almost completely quenched in DMF solution with a concentration of 1 × 10−4 mol/L, however, in hybrid films, the PL intensity enhances obviously with increasing DCMH concentration even at the high loading content of 40 mol%. All the hybrid films exhibit PL emission around 646–650 nm and the peak position reveal little dependence on the concentration of dye, suggesting they can be used as red emissive materials in light-emitting diodes. The relationship between fluorescence lifetime and dye concentration is also investigated by time-resolved PL measurements.  相似文献   

8.
The hydroxyl or vinyl end-groups of linear or three-arm star-shaped poly(ε-caprolactone) (PCL) chains have been derivatized into triethoxysilane groups reactive in the sol-gel process. New transparent hybrid materials that combine tetraethylorthosilicate (TEOS) and PCL known for biodegradability and biocompatibility have accordingly been prepared. The sol-gel process is, however, limited by the early vitrification of the reactive system. However, thermal posttreatment can overcome these diffusional and/or kinetic limitations as assessed by a set of analytical methods. The thermal stability of PCL is improved by incorporation into the silica network. Conversely, the thermal stability of the ceramer depends on the effective PCL content. The extent of PCL incorporation into the silica network depends on PCL molecular weight, number, and reactivity of the PCL functional groups. IR spectroscopy has shown that hydrogen bonding occurs between the ester groups of PCL and residual OH groups of the silicate component. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2295–2309, 1997  相似文献   

9.
Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH3SiO1.5) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.  相似文献   

10.
Phosphorus-modified siloxanes monomer DOPO-IPDI-AMEO (DIA) was synthesized and characterized by 1H nuclear magnetic resonance (H NMR), 31P NMR, and Fourier transform infrared spectra (FTIR). It hydrolyzed and grew an organic–inorganic hybrid coating on the surface of cotton fabrics via sol–gel process. The conversion of gel reaction was characterized by solid-state 29Si NMR. The effect of the modified organic–inorganic hybrid materials on thermal properties of cotton fabrics was investigated by thermogravimetric (TG) analysis, real time Fourier transform infrared (RT-FTIR), and microscale combustion calorimetry (MCC) experiments. In addition, thermogravimetry-Fourier transform infrared spectra (TG-FTIR) were used to investigate the released degradation products. The characterization information represented that DIA has been prepared successfully. Also the conversion of gel reaction was fairly high. The TG data showed that char residues increased with the addition of the DIA coating. While the peak heat release rate (PHRR) decreased with the presence of the coating in MCC test. Moreover, the flammable degradation products dropped obviously, which can be observed from the data of TG-FTIR.  相似文献   

11.
12.
Hybrid organic–inorganic latex particles are synthesized to combine the beneficial properties of the constituents which thus lead to synergistic improvement in the properties. The properties of hybrid particles are dependent on the successful hybridization process, thus controlling or tuning of such processes by effective characterization is immensely important. Analytical ultracentrifugation provides these characterization possibilities owing to its high statistical capability and ability to characterize multiple parameters. The use of different detection methodologies can help in generating valuable information on the overall size and density distributions of the particles. Apart from that, it is also possible to quantify the presence of any free polymer and inorganic particles in the hybrid latex which would affect the properties of hybrid latexes. By following the densities of the pure and hybrid particles, it is also possible to quantify the amounts of the constituent phases in the hybrid particles. The density gradients generated in preparative ultracentrifugation also provide additional possibilities for the characterization of the hybrid particles which have densities higher than the measurable range in the analytical ultracentrifuge. Evolution of hybrid particles can also be studied as a function of time. It also provides advantage of separation of the various fractions for further characterization.  相似文献   

13.
Fluorescent dye (DCM-OH) is covalently bridged to organic–inorganic hybrid material to prevent molecular stacking and to get high fluorescence efficiency and laser property. Novel DCM-OH is synthesized to have hydroxyl functional groups and is bridged to trialkoxysilane as a sol–gel precursor. It participates in sol–gel process to synthesize dye-bridged organic–inorganic hybrid material (dye-bridged hybrimer) and solid-state dye laser sample is ready through polymerization. Fluorescence property of dye-bridged hybrimer is compared with DCM-doped hybrimer that is simple mixture of DCM-OH and hybrimer matrix. The covalently bridged structure of hybrimer with DCM-OH prevented the stacking of fluorescent molecules and enhanced concentration stability. The dye-bridged hybrimer shows much higher fluorescence intensity and low color-shift until it reached high concentration in comparison with DCM-doped system. And the proper lasing property is observed in dye-bridged hybrimer samples.  相似文献   

14.
Organic/inorganic hybrid materials prepared by the sol–gel approach have rapidly become a fascinating new field of research in materials science. The explosion of activity in this area in the past decade has made tremendous progress in both the fundamental understanding of the sol–gel process and the development and applications of new organic/inorganic hybrid materials. Polymer-inorganic nanocomposite present an interesting approach to improve the separation properties of polymer material because they possess properties of both organic and inorganic such as good permeability, selectivity, mechanical strength, and thermal and chemical stability. Composite material derived by combining the sol–gel approach and organic polymers synthesis of hybrid material were the focus area of review It has also been demonstrated in this review that a more complete understanding of their structure–property behavior can be gained by employing many of the standard tools that are utilized for developing similar structure–property relationships of organic polymers. This review article is introductory in nature and gives introduction to composite materials/nanocomposite, their applications and the methods commonly employed for their synthesis and characterization. A brief literature survey on the polysaccharide templated and polysaccharide/protein dual templated synthesis of silica composite materials is also presented in this review article.  相似文献   

15.
Fluorinated organic–inorganic hybrid films were prepared by sol–gel process from tridecafluoroctyltriethoxysilane (PFAS), 3-glycidoxypropyltrimethoxysilane, and tetraethoxysilane (TEOS). It has been found that the fluorinated hybrid films possessed fluorinated side chains originating from PFAS as top layer, and silica network as bottom layer, which had very low surface energy and could be used as water repellent functional coatings. The outermost layer of the water-repellent film may be fully covered by the perfluoroalkyl side chains as the molar ratio of PFAS/TEOS increases up to about 0.005:1. The addition of BPA can enhance the cross-link density of fluorinated hybrid films, and make more perfluoroalkyl groups enriching at the coating film-air interface to lower the surface free energy. However, the improvement of the cross-link density of fluorinated hybrid films tends to exhibit brittleness and micro-cracks. Consequently, it can be concluded that a small BPA additive content is preferred for the formation of fluorinated hybrid films with a smooth surface and less detectable cracks.  相似文献   

16.
Organic–inorganic hybrid liquid crystal (LC) gels have been synthesised by the thiol-ene reaction of a multifunctional cyclic siloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (TVMCTS) and alkane dithiols, 1,6-hexanedithiol (HDT) or 1,9-decanedithiol (DDT), in LC matrices, 4-cyano-4?-pentylbiphenyl (5CB) or 4′-n-octyl-4-cyano-biphenyl (8CB). The LC gels were prepared in an isotropic phase at 70°C or mesophases at 25°C using radical initiators. The phase transition temperatures from a mesophase to an isotropic phase of the resulting gels were lower than those of the original LCs. The gels containing 8CB (8CB gels) prepared at 25°C showed two phase transitions: smectic-to-nematic and nematic-to-isotropic transitions. By contrast, the 8CB gels synthesised in the isotropic phase showed only one phase transition from smectic phase directly to isotropic phase. Reaction conversions in the LC gels prepared at 70°C were higher than that in the gels prepared at 25°C. Scanning microscopic light scattering analysis of the LC gels cleared homogeneous small size mesh with a small amount of large defect. Polarisation micrographs of the LC gels showed framed optical textures derived from the LC molecules at room temperature. The LC gels containing more than 90 wt% of LC showed electro-optic response.  相似文献   

17.
Multi-layer buried rib waveguides were fabricated using sol–gel derived photopatternable organic–inorganic hybrid materials through multi-step spin coating and photolithography. A single mode circular waveguide at 1,550 nm was designed and fabricated using the equivalent refractive index method. Propagation loss in the order of 1.0 dB/cm was measured by cutback method. Waveguide thermal stability and thermo-optic coefficient were investigated using thermogravimetric analysis (TGA) and spectroscopic ellipsometry, respectively. Results suggest that the single mode waveguide can be used to develop thermal optical devices such as thermo-optic switches.  相似文献   

18.
New organic–inorganic nano-complexes were produced from a micelle of tri-block polymers; poly(styrene)-b-poly(2-vinylpyridine)- b-poly (ethylene oxide) (PS-PVP-PEO) and tungsten compounds such as tungstate (W12−), undecatungstophospate (PW117−) and undecatungstosilicate (SiW118−) in acidic aqueous solutions. The size and morphology of the complexes were characterized by measurements of dynamic light scattering, atomic force microscopy, and scanning electron microscopy. This complex is assembled mainly by the charge interaction between the inorganic polyanions and the positively charged PVP block in the PS-PVP-PEO molecule, which was confirmed by zeta-potential and fluorescence spectroscopic studies. In the absence of the inorganic anions, the zeta-potential of the micelle was +11 mV at pH 3 due to the positive charge of the PVP block. When the inorganic anion was mixed with the PS-PVP-PEO micelle, decrease in the zeta-potential due to charge neutralization occurred with incorporation of inorganic anions into the PS-PVP-PEO micelle. The minimum zeta-potential was 0, −33, and −35 mV for W12− /PS-PVP-PEO, PW117− /PS-PVP-PEO, and SiW118− /PS-PVP-PEO complexes, respectively. Excess negative charge which occurred in the latter two complexes indicates that PS-PVP-PEO molecules bound PW117− and SiW118− by forces other than charge interaction. In addition, the incorporation of an inorganic polyanion into the micelle gave a new morphology to the micelle. In the absence of the polyanion, the PS-PVP-PEO micelles showed an extended conformation due to repulsive forces working among the positively charged PVP blocks. Addition of the polyanion caused the formation of shrunken forms of the micelles, since the charge repulsion was cancelled by the polyanion. This feature may be useful in developing a new type of functioning micelle.  相似文献   

19.
This work adopted semi-covalent imprinting to prepare molecularly imprinted polymers (MIP) with ibuprofen, a non-steroidal anti-inflammatory drug, as template by sol–gel processing, which is characterized by both the high affinity of covalent binding and the mild operation conditions of non-covalent rebinding. A functional monomer, which was used to synthesize the monomer-imprinted molecule complex, was prepared by multi-step synthesis for the first time. MIP was characterized by Fourier transform IR spectrum and nitrogen adsorption. Thin-layer chromatography separation was used to evaluate the specific molecular recognition ability of MIP. In addition, dynamic and thermodynamic studies on MIP imprinting ibuprofen were undertaken. The results of equilibrium rebinding experiments showed that MIP exhibited good adsorption capacity for ibuprofen. Scatchard analysis illustrated that the template-polymer system shows only one-site binding behavior with a dissociation constant of 1.84 mmol L?1. Dynamic adsorption exhibited pseudo-second-order kinetics. The positive value of ΔHθ and the negative values of ΔGθ demonstrated that the binding system for MIP is endothermic and spontaneous.  相似文献   

20.
A series of negatively charged hybrid (organic–inorganic) materials were prepared through sol–gel process. The alkoxysilane-containing sol–gel precursors PEO-[Si(OEt)3]2SO3H were obtained by endcapping polyethylene oxide (PEO) of different molecular weights with 2,4-diisocyanate toluene (TDI), followed by a coupling reaction with phenylaminomethyl triethoxysilane (ND-42) and sulfonation afterwards. The negatively charged precursors were then hydrolyzed and condensed to generate hybrid sol–gel materials, which were characterized by IR, TGA, XRD as well as the conventional ion exchange measurements. The results showed that in the hybrid sol–gel precursors PEO-[Si(OEt)3]2SO3H organic PEO component was incorporated with alkoxysilane-containing ND-42 covalently. As the molecular weight of the precursors increased, thermal stability and cation-exchange capacity of the hybrid material decreased. All the hybrid materials were amorphous and those prepared from higher molecular weight precursors were flexible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号