首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report star polymer metal–organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three‐component assembly strategy. The star polyMOC network is composed of tetra‐arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal–ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer‐bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of material properties including tunable moduli and relaxation dynamics.  相似文献   

2.
Metal–organic anion channels based on Zn10L15 pentagonal prisms have been prepared by subcomponent self‐assembly. The insertion of these prisms into lipid membranes was investigated by ion‐current and fluorescence measurements. The channels were found to mediate the transport of Cl anions through planar lipid bilayers and into vesicles. Tosylate anions were observed to bind and plug the central channels of the prisms in the solid state and in solution. In membranes, dodecyl sulfate blocked chloride transport through the central channel. Our Zn10L15 prism thus inserts into lipid bilayers to turn on anion transport, which can then be turned off through addition of the blocker dodecyl sulfate.  相似文献   

3.
The combination of polyoxoniobates (PONbs) with 3d metal ions, azoles, and organoamines is a general synthetic procedure for making unprecedented PONb metal complex cage materials, including discrete molecular cages and extended cage frameworks. By this method, the first two PONb metal complex cages K4@{[Cu29(OH)7(H2O)2(en)8(trz)21][Nb24O67(OH)2(H2O)3]4} and [Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)} have been made. The former exhibits a huge tetrahedral cage with more than 120 metal centers, which is the largest inorganic–organic hybrid PONb known to date. The later shows a large cubic cage, which can act as building blocks for cage‐based extended assembly to form a 3D cage framework {[Cu(en)2]@{[Cu2(trz)2(en)2]6[H10Nb68O188]}}. These materials exhibit visible‐light‐driven photocatalytic H2 evolution activity and high vapor adsorption capacity. The results hold promise for developing both novel cage materials and largely unexplored inorganic–organic hybrid PONb chemistry.  相似文献   

4.
π‐Conjugated molecular cages are very challenging targets in structural organic chemistry, supramolecular chemistry, and materials science. The synthesis and physical characterizations are reported of the first three‐dimensionally π‐conjugated diradical molecular cage PTM‐C, in which two polychlorotriphenylmethyl (PTM) radicals are linked by three bis(3,6‐carbazolyl) bridges. This cage compound was synthesized mainly by intermolecular Yamamoto coupling followed by deprotonation and oxidation. It is stable and its structure was confirmed by X‐ray crystallographic analysis. The two carbon‐centered PTM radicals are weakly coupled through electronic interactions with the carbazole spacers, as revealed by optical, electronic, and magnetic measurements as well as theoretical calculations.  相似文献   

5.
6.
We describe the a priori computational prediction and realization of multi‐component cage pots, starting with molecular predictions based on candidate precursors through to crystal structure prediction and synthesis using robotic screening. The molecules were formed by the social self‐sorting of a tri‐topic aldehyde with both a tri‐topic amine and di‐topic amine, without using orthogonal reactivity or precursors of the same topicity. Crystal structure prediction suggested a rich polymorphic landscape, where there was an overall preference for chiral recognition to form heterochiral rather than homochiral packings, with heterochiral pairs being more likely to pack window‐to‐window to form two‐component capsules. These crystal packing preferences were then observed in experimental crystal structures.  相似文献   

7.
The photoinduced regio‐ and enantioselective coupling of naphthols and derivatives thereof is achieved in the confined chiral coordination space of a RuII metalloligand based cage. The racemic or enantiopure cages encapsulate naphthol guests, which then undergo a regiospecific 1,4‐coupling, rather than the normal 1,1‐coupling, to form 4‐(2‐hydroxy‐1‐naphthyl)‐1,2‐napthoquinones; moderate stereochemical control is achieved with homochiral cages. The photoreactions proceed under both aerobic and anaerobic conditions but through distinct pathways that nevertheless involve the same radical intermediates. This unusual dimerization constitutes a very rare example of asymmetric induction in biaryl coupling by making use of coordination cages with dual functionality—photoredox reactivity and stereoselectivity.  相似文献   

8.
Planar pyridyl N‐oxides are encapsulated in mono‐metallic PdII/PtII‐cages based on a tetra‐pyridyl calix[4]pyrrole ligand. The exchange dynamics of the cage complexes are slow on both the NMR chemical shift and EXSY timescales, but encapsulation of the guests by the cages is fast on the human timescale. A “French doors” mechanism, involving the rotation of the meso‐phenyl walls of the cages, allows the passage of the planar guests. The encapsulation of quinuclidine N‐oxide, a sterically more demanding guest, is slower than pyridyl N‐oxides in the PdII‐cage, and does not take place in the PtII counterpart. A modification of the encapsulation mechanism for the quinuclidine N‐oxide is postulated that requires the partial dissociation of the PdII‐cage. The substrate binding selectivity featured by the cages is related to their different guest uptake/release mechanisms.  相似文献   

9.
In the presence of trifluoromethylsulfonium reagents, boronate complexes derived from 2‐lithio furan and non‐racemic secondary and tertiary alkyl or aryl boronic esters undergo deborylative three‐component coupling to give the corresponding 2,5‐disubstituted furans with excellent levels of enantiospecificity. The process proceeds via the reaction of boronate complexes with a trifluoromethyl radical, which triggers 1,2‐metallate rearrangement upon single‐electron oxidation. Alternative electrophiles can also be used in place of trifluoromethylsulfonium reagents to effect similar three‐component coupling reactions.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
Multiple applications of isothioureas as fine chemicals (or their precursors) are known, but a general sustainable method for their synthesis was hitherto unavailable. We report a novel general approach towards S‐alkyl and S‐aryl isothioureas through a copper(I)‐catalyzed three‐component reaction between amines, isocyanides, and thiosulfonates. The formal synthesis of a superpotent sweetener further illustrates the applicability of our method.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号