首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
The ability to catalyze the oxidation of both H2 and CO in one reaction pot would be a major boon to hydrogen technology since CO is a consistent contaminant of H2 supplies. Here, we report just such a catalyst, with the ability to catalyze the oxidation of either or both H2 and CO, based on the pH value. This catalyst is based on a NiIr core that mimics the chemical function of [NiFe]hydrogenase in acidic media (pH 4–7) and carbon monoxide dehydrogenase in basic media (pH 7–10). We have applied this catalyst in a demonstration fuel cell using H2, CO, and H2/CO (1/1) feeds as fuels for oxidation at the anode. The power density of the fuel cell depends on the pH value in the media of the fuel cell and shows a similar pH dependence in a flask. We have isolated and characterized all intermediates in our proposed catalytic cycles.  相似文献   

2.
The cobalt nanoparticles over γ-Al_2O_3 support were prepared via chemical reduction of CoCl_2·6H_2O using NaBH_4 with various values of pH in the range of 11. 92-13. 80. Synthesized catalysts were studied through X-ray diffraction( XRD),N_2 adsorption/desorption( BET),H_2-temperature programmed reduction( H_2-TPR),H_2-chemisorption,O_2 pulse titration and temperature programmed oxidation( TPO) methods. Obtained results exhibited the synthesis solution pH showed a significant influence on the activity and selectivity in partial oxidation of methane reaction. The methane conversion,CO selectivity and H_2 yield were enhanced by increasing of the synthesis solution pH. Compared to other catalysts,the catalyst that synthesized at pH of 13.80,showed a superior ability in syngas production with a H_2/CO ratio of near 2 and also a proper stability against deactivation during the partial oxidation of methane.  相似文献   

3.
During the last few decades organometallic methodologies have generated a number of highly effective electrocatalyst systems based on mono‐ and bimetallic nanosparticles having controlled size, composition and structure. In this microreview we summarize our results in fuel cell catalyst preparation applying triorganohydroborate chemistry, ‘reductive particle stabilization’ using organoaluminum compounds, and the controlled decomposition of organometallic complexes. The advantages of organometallic catalyst preparation pathways are exemplified with Ru? Pt nanoparticles@C as promising anode catalysts to be used in direct methanol oxidation fuel cells (DMFC) or in polymer electrolyte fuel cells (PEMFC) running with CO‐contaminated H2 as the feed. Recent findings with highly efficient PtCo3@C fuel cell catalysts applied for the oxygen reduction reaction (ORR) and with the effect of Se‐doping on Ru@C ORR catalysts clearly demonstrate the benefits of organometallic catalyst synthesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A barrier to the widespread use of fuel cells is their reliance on expensive and scarce platinum and other precious metal catalysts. We present a catalyst for hydrogen oxidation, prepared electrochemically from high-purity aqueous tungstate salt precursors. The 24-electron reduction of ammonium metatungstate ((NH4)6[H2W12O40]) yields a material with electrocatalytic activity towards the oxidation of hydrogen in acid electrolyte which approaches 25% that of platinum. Moreover, the tungstate catalyst is unusually tolerant to CO and H2S contaminants in the fuel stream.  相似文献   

5.
The direct methanol fuel cell (DMFC) is considered as a promising power source, because of its abundant fuel source, high energy density and environmental friendliness. Among DMFC anode materials, Pt and Pt group metals are considered to be the best electrocatalysts. The combination of Pt with some specific transition metal can reduce the cost and improve the tolerance toward CO poisoning of pure Pt catalysts. In this paper, the geometric stabilities of PtFe/PdFe atoms anchored in graphene sheet and catalytic CO oxidation properties were investigated using the density functional theory method. The results show that the Pt (Pd) and Fe atoms can replace C atoms in graphene sheet. The CO oxidation reaction by molecular O2 on PtFe–graphene and PdFe–graphene was studied. The results show that the Eley–Rideal (ER) mechanism is expected over the Langmuir–Hinshelwood mechanism for CO oxidation on both PtFe–graphene and PdFe–graphene. Further, complete CO oxidation on PtFe–graphene and PdFe–graphene proceeds via a two‐step ER reaction: CO(gas) + O2(ads) → CO2(ads) + O(ads) and CO(gas) + O(ads) → CO2(ads). Our results reveal that PtFe/PdFe commonly embedded in graphene can be used as a catalyst for CO oxidation. The microscopic mechanism of the CO oxidation reaction on the atomic catalysts was explored.  相似文献   

6.
The water-gas shift (WGS) reaction is often conducted at elevated temperature and requires energy-intensive separation of hydrogen (H2) from methane (CH4), carbon dioxide (CO2), and residual carbon monoxide (CO). Designing processes to decouple CO oxidation and H2 production provides an alternative strategy to obtain high-purity H2 streams. We report an electrothermal WGS process combining thermal oxidation of CO on a silicomolybdic acid (SMA)-supported Pd single-atom catalyst (Pd1/CsSMA) and electrocatalytic H2 evolution. The two half-reactions are coupled through phosphomolybdic acid (PMA) as a redox mediator at a moderate anodic potential of 0.6 V (versus Ag/AgCl). Under optimized conditions, our catalyst exhibited a TOF of 1.2 s−1 with turnover numbers above 40 000 mol molPd−1 achieving stable H2 production with a purity consistently exceeding 99.99 %.  相似文献   

7.
Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ~20 vol %) at a volumetric flow rate of ~100 1 (g Cat)?1 h?1, which is one magnitude higher than the flow rates reported for this process in the literature.  相似文献   

8.
Apart from energy generation, the storage and liberation of energy are among the major problems in establishing a sustainable energy supply chain. Herein we report the development of a rechargeable H2 battery which is based on the principle of the Ru‐catalyzed hydrogenation of CO2 to formic acid (charging process) and the Ru‐catalyzed decomposition of formic acid to CO2 and H2 (discharging process). Both processes are driven by the same catalyst at elevated temperature either under pressure (charging process) or pressure‐free conditions (discharging process). Up to five charging–discharging cycles were performed without decrease of storage capacity. The resulting CO2/H2 mixture is free of CO and can be employed directly in fuel‐cell technology.  相似文献   

9.
A biomimetic nickel bis‐diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2 H+ interconversion from pH 0 to 9, with catalytic preference for H2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio‐inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni‐based PEMFC reaches 14 mW cm−2, only six‐times‐less as compared to full‐Pt conventional PEMFC. The Pt‐free enzyme‐based fuel cell delivers ≈2 mW cm−2, a new efficiency record for a hydrogen biofuel cell with base metal catalysts.  相似文献   

10.
Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e? process, while oxygen can be fully reduced to water by a 4 e?/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2?. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.  相似文献   

11.
The CuO-CeO2/Al2O3 catalysts for the selective oxidation of CO in hydrogen-containing mixtures were prepared by surface self-propagating thermal synthesis (SSTS) with the use of cerium nitrate Ce(NO3)3, the ammonia complex of copper acetate [Cu(NH3)4](CH3COO)2, and citric acid C6H8O7 as a fuel additive. The effect of the C6H8O7/Ce(NO3)3 molar ratio on the catalyst activity and selectivity for oxygen was studied. The catalyst samples were studied by X-ray diffraction (XRD) analysis, temperature-programmed reduction (TPR-H2), IR spectroscopy of adsorbed CO, and transmission electron microscopy (TEM). It was found that an increase in the C6H8O7/Ce(NO3)3 ratio resulted in an increase in the degree of dispersion of the resulting CeO2 phase. The greatest amount of dispersed CuO particles, which are responsible for catalytic activity in the oxidation of CO, was formed at C6H8O7/Ce(NO3)3 = 1.  相似文献   

12.
The effect of NO and SO2 on the oxidation of a CO? H2 mixture was studied in a jet‐stirred reactor at atmospheric pressure and for various equivalence ratios (0.1, 1, and 2) and initial concentrations of NO and SO2 (0–5000 ppm). The experiments were performed at fixed residence time and variable temperature ranging from 800 to 1400 K. Additional experiments were conducted in a laminar flow reactor on the effect of SO2 on CO? H2 oxidation in the same temperature range for stoichiometric and reducing conditions. It was demonstrated that in fuel‐lean conditions, the addition of NO increases the oxidation of the CO? H2 mixture below 1000 K and has no significant effect at higher temperatures, whereas the addition of SO2 has a small inhibiting effect. Under stoichiometric and fuel‐rich conditions, both NO and SO2 inhibit the oxidation of the CO? H2 mixture. The results show that a CO? H2 mixture has a limited NO reduction potential in the investigated temperature range and rule out a significant conversion of HNO to NH through reactions like HNO + CO ?? NH + CO2 or HNO + H2 ?? NH + H2O. The chain terminating effect of SO2 under stoichiometric and reducing conditions was found to be much more pronounced than previously reported under flow reactor conditions and the present results support a high rate constant for the H + SO2 + M ?? HOSO + M reaction. The reactor experiments were used to validate a comprehensive kinetic reaction mechanism also used to simulate the reduction of NO by natural gas blends and pure C1 to C4 hydrocarbons. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 564–575, 2003  相似文献   

13.
The preferential oxidation (PROX, CO + H2 + O2 → CO2 + H2O) of the CO reaction in an H2 stream is the simplest and most cost-effective method to remove CO gas to less than 10 ppm in reformed fuel gas. We study the mechanism of PROX of the CO reaction in the H2 stream catalyzed by Cu n Ni (n = 3-12) clusters using a density functional theory (DFT) calculation to investigate bimetallic effects on the catalytic activation. Our results indicate that the Cu12Ni cluster is the most efficient catalyst for H2 dissociation and the Cu6Ni cluster is the most efficient catalyst for CO-PROX in excess hydrogen among Cu n Ni (n = 3-12) clusters. To gain insight into the adsorption and dissociation of the H2 molecule effect in the catalytic activity over the Cu12Ni cluster and the potential energy surfaces about PROX of CO oxidation on the Cu6Ni cluster, the nature of the interaction between the adsorbate and substrate is analyzed by detailed electron local densities of states (LDOS) as well as molecular structures.  相似文献   

14.
The kinetics of selective CO oxidation (or individual CO or H2 oxidation) over ruthenium catalysts are considerably as affected by the heat released by the reaction and specifics of the interaction of ruthenium with feed oxygen. In a reactor with reduced heat removal (a quartz reactor) under loads of ∼701 gCat−1 h−1 and reagent percentages of ∼1 vol % CO, ∼1 vol % O2, ∼60 vol % H2, and N2 to the balance, the reaction can be carried out in the catalyst surface ignition regime. When catalyst temperatures are below ∼200°C, feed oxygen deactivates metallic ruthenium, the degree of deactivation being a function of temperature and treatment time. Accordingly, depending on the parameters of the experiment and the properties of the ruthenium catalyst, various scenarios of the behavior of the catalyst in selective CO oxidation are realized, including both steady and transition states: in a non-isothermal regime, a slow deactivation of the catalyst accompanied by a travel of the reaction zone through the catalyst bed along the reagent flow; activation of the catalyst; or the oscillation regime. The results of this study demonstrate that, for a strongly exothermic reaction (selective CO oxidation, or CO, or H2 oxidation) occurring inside the catalyst bed, the specifics of the entrance of the reaction into the surface ignition regime and the effects of feed components on the catalyst activity should be taken into account.  相似文献   

15.
低贵金属Pt-Rh型三效催化剂空燃比性能的研究   总被引:3,自引:0,他引:3  
研究了以浸渍法制备的低贵金属Pt-Rh型三效催化剂对C3H8, CO, NO的催化活性. 主要考察了CeO2-ZrO2和BaO的添加对催化剂空燃比性能的影响, 通过氧化反应、水气变换和蒸汽重整的性能研究, 探讨了催化剂三效工作窗口扩大的原因. 结果表明, 催化剂中只添加CeO2-ZrO2时即具有优异的水气变换性能, 蒸汽重整在250 ℃左右发生, 并且在450 ℃以下时C3H8的转化率一直保持在20%左右; BaO添加到含有CeO2-ZrO2的催化剂中对水气变换和蒸汽重整则有明显的促进作用, 能进一步扩大催化剂的三效工作窗口; 催化剂中只添加CeO2-ZrO2时, 能明显提高催化剂对CO的氧化反应活性, 但对C3H8的氧化反应的影响则不明显; BaO和CeO2-ZrO2同时存在于催化剂中时, 能进一步提高CO的氧化反应活性, 对C3H8的氧化反应则没有明显的促进作用.  相似文献   

16.
Developing highly efficient electrocatalysts for hydrogen oxidation reaction (HOR) under alkaline media is essential for the commercialization of alkaline exchange membrane fuel cell (AEMFC). However, the kinetics of HOR in alkaline media is complicated, resulting in orders of magnitude slower than that in acid, even for the state-of-the-art Pt/C. Here, we find that Ru-Ru2P/C heterostructure shows HOR performance with a non-monotonous variation in a whole pH region. Unexpectedly, an inflection point located at pH≈7 is observed, showing an anomalous behavior that HOR activity under alkaline media surpasses acidic media. Combining experimental results and theoretical calculations, we propose the roles of discrepant reactive intermediates for pH-universal HOR, while H* and H2O* adsorption strengths are responsible for acidic HOR, and OH* adsorption strength is essential for alkaline HOR. This work not only sheds light on fundamentally understanding the mechanism of HOR but also provides new designing principles for pH-targeted electrocatalysts.  相似文献   

17.
Higher alcohol has been considered as a potential fuel additive. Higher alcohol, including C2–C4 alcohol was synthesized by catalytic conversion of syngas (with a ratio of CO/H2?=?1) derived from natural gas over modified Cu/ZnO/Al2O3 catalyst. Modified Cu/ZnO/Al2O3 catalysts promoted by alkali metal (Li) for higher alcohol synthesis (HAS) were prepared at different pH (6, 6.5, 7, 8, and 9) by co-precipitation to control Cu surface area and characterized by N2 physisorption, XRD, SEM, H2-TPR and TPD. The HAS reaction was carried out under a pressure of 45 bar, GHSV of 4000 h?1, ratio of H2/CO?=?1, and temperature ranges of 240 and 280 °C. It was found that the malachite phase of copper causes the size of copper to be small, which is suitable for methanol synthesis. Methanol and HAS share a common catalytic active site and intermediate. It was also found that the productivity to higher alcohol was correlated with Cu surface area.  相似文献   

18.
CO poisoning of Pt group metal (PGM) catalysts is a chronic problem for hydrogen oxidation reaction (HOR), the anodic reaction of hydroxide exchange membrane fuel cell (HEMFC) for converting H2 to electric energy in sustainable manner. We demonstrate here an ultrathin Ru-based nanoflower modified with Pb (PbRuCu NF) as an active, stable, and CO-resistant catalyst for alkaline HOR. Mechanism studies show that the presence of Pb can weaken the adsorption of *H, strengthen *OH adsorption to facilitate CO oxidation, as a result of significantly enhanced HOR activity and improved CO tolerance. Furthermore, in situ electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) suggests that Pb acts as oxygen-rich site to regulate the behavior of the linear CO adsorption. The optimized Pb1.04-Ru92Cu8/C displays a mass activity and specific activity of 1.10 A mgRu−1 and 5.55 mA cm−2, which are ≈10 and ≈31 times higher than those of commercial Pt/C. This work provides a facile strategy for the design of Ru-based catalyst with high activity and strong CO-resistance for alkaline HOR, which may promote the fundamental researches on the rational design of functional catalysts.  相似文献   

19.
A dinuclear copper(II) complex [Cu2(oxheel)] was synthesized and its structure was analyzed. This compound was then mixed with a surfactant (Brij35 or LSS) to form a metallomicelle, which would catalyze the phenol oxidation with the hydrogen peroxide (H2O2). The reaction mechanism and the mathematic model for the kinetics of this reaction were proposed, and the effect of the molar ratio between H2O2 and catalyst, of the temperature and of the pH levels on the rate of catalytic reaction were studied.  相似文献   

20.
The discovery that gold catalysts could be active for CO oxidation at cryogenic temperatures has ignited much excitement in nanocatalysis. Whether the alternative Pt group metal (PGM) catalysts can exhibit such high performance is an interesting research issue. So far, no PGM catalyst shows activity for CO oxidation at cryogenic temperatures. In this work, we report a sub‐nano Rh/TiO2 catalyst that can completely convert CO at 223 K. This catalyst exhibits at least three orders of magnitude higher turnover frequency (TOF) than the best Rh‐based catalysts and comparable to the well‐known Au/TiO2 for CO oxidation. The specific size range of 0.4–0.8 nm Rh clusters is critical to the facile activation of O2 over the Rh–TiO2 interface in a form of Rh?O?O?Ti (superoxide). This superoxide is ready to react with the CO adsorbed on TiO2 sites at cryogenic temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号