首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, a number of nonlocal integrable equations, such as the ‐symmetric nonlinear Schrödinger (NLS) equation and ‐symmetric Davey–Stewartson equations, were proposed and studied. Here, we show that many of such nonlocal integrable equations can be converted to local integrable equations through simple variable transformations. Examples include these nonlocal NLS and Davey–Stewartson equations, a nonlocal derivative NLS equation, the reverse space‐time complex‐modified Korteweg–de Vries (CMKdV) equation, and many others. These transformations not only establish immediately the integrability of these nonlocal equations, but also allow us to construct their Lax pairs and analytical solutions from those of the local equations. These transformations can also be used to derive new nonlocal integrable equations. As applications of these transformations, we use them to derive rogue wave solutions for the partially ‐symmetric Davey–Stewartson equations and the nonlocal derivative NLS equation. In addition, we use them to derive multisoliton and quasi‐periodic solutions in the reverse space‐time CMKdV equation. Furthermore, we use them to construct many new nonlocal integrable equations such as nonlocal short pulse equations, nonlocal nonlinear diffusion equations, and nonlocal Sasa–Satsuma equations.  相似文献   

2.
The inverse scattering transform (IST) is developed for a class of matrix nonlinear Schrödinger‐type systems whose reductions include two equations that model certain hyperfine spin spinor Bose–Einstein condensates, and two novel equations that were recently shown to be integrable, and that have applications in nonlinear optics and four‐component fermionic condensates. In addition, the general behavior of the soliton solutions for all four reductions is analyzed in detail, and some novel solutions are presented.  相似文献   

3.
The aim of the paper is to construct nonlocal reverse-space nonlinear Schrödinger (NLS) hierarchies through nonlocal group reductions of eigenvalue problems and generate their inverse scattering transforms and soliton solutions. The inverse scattering problems are formulated by Riemann-Hilbert problems which determine generalized matrix Jost eigenfunctions. The Sokhotski-Plemelj formula is used to transform the Riemann-Hilbert problems into Gelfand-Levitan-Marchenko type integral equations. A solution formulation to special Riemann-Hilbert problems with the identity jump matrix, corresponding to the reflectionless transforms, is presented and applied to -soliton solutions of the nonlocal NLS hierarchies.  相似文献   

4.
We study solutions of the Cauchy problem for nonlinear Schrödinger system in with nonlinear coupling and linear coupling modeling synthetic magnetic field in spin‐orbit coupled Bose–Einstein condensates. Three main results are presented: a proof of the local existence, a proof of the sufficient condition for the blowup result in finite time for some solutions, and the persistence of the nonlinear dynamics in the limit where the spin‐orbit coupling converges to zero.  相似文献   

5.
The coupled Klein–Gordon–Schrödinger equation is reduced to a nonlinear ordinary differential equation (ODE) by using Lie classical symmetries, and various solutions of the nonlinear ODE are obtained by the modified ‐expansion method proposed recently. With the aid of solutions of the nonlinear ODE, more explicit traveling wave solutions of the coupled Klein–Gordon–Schrödinger equation are found out. The traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Continuous families of solitons in the nonlinear Schrödinger equation with non‐‐symmetric complex potentials and general forms of nonlinearity are studied analytically. Under a weak assumption, it is shown that stationary equations for solitons admit a constant of motion if and only if the complex potential is of a special form , where is an arbitrary real function. Using this constant of motion, the second‐order complex soliton equation is reduced to a new second‐order real equation for the amplitude of the soliton. From this real soliton equation, a novel perturbation technique is employed to show that continuous families of solitons bifurcate out from linear discrete modes in these non‐‐symmetric complex potentials. All analytical results are corroborated by numerical examples.  相似文献   

7.
In this paper, the partially party‐time () symmetric nonlocal Davey–Stewartson (DS) equations with respect to x is called x‐nonlocal DS equations, while a fully symmetric nonlocal DSII equation is called nonlocal DSII equation. Three kinds of solutions, namely, breather, rational, and semirational solutions for these nonlocal DS equations are derived by employing the bilinear method. For the x‐nonlocal DS equations, the usual (2 + 1)‐dimensional breathers are periodic in x direction and localized in y direction. Nonsingular rational solutions are lumps, and semirational solutions are composed of lumps, breathers, and periodic line waves. For the nonlocal DSII equation, line breathers are periodic in both x and y directions with parallels in profile, but localized in time. Nonsingular rational solutions are (2 + 1)‐dimensional line rogue waves, which arise from a constant background and disappear into the same constant background, and this process only lasts for a short period of time. Semirational solutions describe interactions of line rogue waves and periodic line waves.  相似文献   

8.
Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrödinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed. It is found that in some cases, the soliton solutions to the nonlinear Schrödinger equation cannot be recovered from Maxwell’s equations while in others the soliton solutions to Maxwell’s equations are lost from the nonlinear Schrödinger equation through approximation, although there are cases where the soliton solutions to the two sets of the equations demonstrate only quantitative difference. The origin of the differences is also discussed.  相似文献   

9.
Initial‐boundary value problems for the coupled nonlinear Schrödinger equation on the half‐line are investigated via the Fokas method. It is shown that the solution can be expressed in terms of the unique solution of a matrix Riemann–Hilbert problem formulated in the complex k‐plane, whose jump matrix is defined in terms of the matrix spectral functions and that depend on the initial data and all boundary values, respectively. If there exist spectral functions satisfying the global relation, it can be proved that the function defined by the above Riemann–Hilbert problem solves the coupled nonlinear Schrödinger equation and agrees with the prescribed initial and boundary values. The most challenging problem in the implementation of this method is to characterize the unknown boundary values that appear in the spectral function . For a particular class of boundary conditions so‐called linearizable boundary conditions, it is possible to compute the spectral function in terms of and given boundary conditions by using the algebraic manipulation of the global relation. For the general case of boundary conditions, an effective characterization of the unknown boundary values can be obtained by employing perturbation expansion.  相似文献   

10.
We relate the scattering theory of the focusing AKNS system with vanishing boundary conditions to that of the matrix Schrödinger equation. The corresponding Miura transformation, which allows this connection, converts the focusing matrix nonlinear Schrödinger (NLS) equation into a new nonlocal integrable equation. We apply the matrix triplet method to derive the multisoliton solutions of the nonlocal integrable equation, thus proposing a new method to solve the matrix NLS equation.  相似文献   

11.
In the paper, we continue to consider symmetries related to the Ablowitz–Ladik hierarchy. We derive symmetries for the integrable discrete nonlinear Schrödinger hierarchy and discrete AKNS hierarchy. The integrable discrete nonlinear Schrödinger hierarchy is in scalar form and its two sets of symmetries are shown to form a Lie algebra. We also present discrete AKNS isospectral flows, non‐isospectral flows and their recursion operator. In continuous limit these flows go to the continuous AKNS flows and the recursion operator goes to the square of the AKNS recursion operator. These discrete AKNS flows form a Lie algebra that plays a key role in constructing symmetries and their algebraic structures for both the integrable discrete nonlinear Schrödinger hierarchy and discrete AKNS hierarchy. Structures of the obtained algebras are different structures from those in continuous cases which usually are centerless Kac–Moody–Virasoro type. These algebra deformations are explained through continuous limit and degree in terms of lattice spacing parameter h.  相似文献   

12.
We mainly study a system of two coupled nonlinear Schrödinger equations where one equation includes gain and the other one includes losses. This model constitutes a generalization of the model of pulse propagation in birefringent optical fibers. We aim in this study at partially answering a question of some authors in [1]: “Is the H1‐norm of the solution globally bounded in the Manakov case, when ?” We found that in the Manakov case, and when , the solution stays in , and also that the H1‐norm of the solution cannot blow up in finite time. In the Manakov case, an estimate of the total energy is provided, which is different from that has been given in [1]. These results are corroborated by numerical results that have been obtained with a finite element solver well adapted for that purpose.  相似文献   

13.
We study here the initial value problem for a two‐dimensional Korteweg–de Vries (KdV) equation, first derived by Calogero and Bogoyavlenskii, by means of the inverse scattering transform. The dynamics of the discrete spectrum of an associated Schrödinger operator is far richer than that of KdV equation. Even for optimal eigenvalues, generic smooth solutions may develop shocks with multiple branches and/or cusp singularities in finite time. However, evolution may move poles of the transmission coefficient off the imaginary axis, destroy or even create them. We characterize conditions to prevent these pathologies before explosion time and describe ample classes of solutions, corresponding to both continuous and discrete spectrum. We also find that in certain conditions new eigenvalues might be created; in these cases a minimal set of initial spectral data must incorporate additionally the transmission coefficient on the entire plane. The previous results are applied to describe the Cauchy problem corresponding to initial data combinations of delta terms and derivatives and show that for long time the delta singularity may persist or be smoothed to a cusp‐discontinuity. Finally, we give conditions under which the evolution is reduced to the classical KdV.  相似文献   

14.
This paper is concerned with the initial value problem for the fourth‐order nonlinear Schrödinger type equation related to the theory of vortex filament. By deriving a fundamental estimate on dyadic blocks for the fourth‐order Schrödinger through the [k,Z]‐multiplier norm method. we establish multilinear estimates for this nonlinear fourth‐order Schrödinger type equation. The local well‐posedness for initial data in with s > 1 ∕ 2 is implied by the multilinear estimates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the Hirota's bilinear method and Kadomtsev-Petviashvili hierarchy reduction method are applied to construct soliton, line breather and (semi-)rational solutions to the nonlocal Mel'nikov equation with nonzero boundary conditions. These solutions are expressed as Gram-type determinants. When N is even, soliton, line breather and (semi-)rational solutions on the constant background are derived while these solutions are located on the periodic background for odd N. Regularity of these solutions and their connections with the local Mel'nikov equation are analyzed for proper choices of parameters that appear in the solutions. The dynamics of the solutions are discussed in detail. All possible configurations of soliton and lump solutions are found for . Several interesting dynamical behaviors of semi-rational solutions are observed. It is shown that certain lumps may exhibit fusion and fission phenomena during their interactions with solitons while some lump may change its direction of movement after it collides with solitons.  相似文献   

16.
Our aim is to develop the inverse scattering transform for multicomponent generalizations of nonlocal reductions of the nonlinear Schrödinger (NLS) equation with \(\mathcal{PT}\) symmetry related to symmetric spaces. This includes the spectral properties of the associated Lax operator, the Jost function, the scattering matrix, the minimum set of scattering data, and the fundamental analytic solutions. As main examples, we use theManakov vector Schrödinger equation (related to A.III-symmetric spaces) and the multicomponent NLS (MNLS) equations of Kulish–Sklyanin type (related to BD.I-symmetric spaces). Furthermore, we obtain one- and two-soliton solutions using an appropriate modification of the Zakharov–Shabat dressing method. We show that the MNLS equations of these types admit both regular and singular soliton configurations. Finally, we present different examples of one- and two-soliton solutions for both types of models, subject to different reductions.  相似文献   

17.
18.
This paper focuses on the construction of rational solutions for the -Painlevé system, also called the Noumi-Yamada system, which are considered the higher order generalizations of PIV. In this even case, we introduce a method to construct the rational solutions based on cyclic dressing chains of Schrödinger operators with potentials in the class of rational extensions of the harmonic oscillator. Each potential in the chain can be indexed by a single Maya diagram and expressed in terms of a Wronskian determinant whose entries are Hermite polynomials. We introduce the notion of cyclic Maya diagrams and characterize them for any possible period, using the concepts of genus and interlacing. The resulting classes of solutions can be expressed in terms of special polynomials that generalize the families of generalized Hermite, generalized Okamoto, and Umemura polynomials, showing that they are particular cases of a larger family.  相似文献   

19.
This paper aims to formulate the fractional quasi‐inverse scattering method. Also, we give a positive answer to the following question: can the Ablowitz‐Kaup‐Newell‐Segur (AKNS) method be applied to the space–time fractional nonlinear differential equations? Besides, we derive the Bäcklund transformations for the fractional systems under study. Also, we construct the fractional quasi‐conservation laws for the considered fractional equations from the defined fractional quasi AKNS‐like system. The nonlinear fractional differential equations to be studied are the space–time fractional versions of the Kortweg‐de Vries equation, modified Kortweg‐de Vries equation, the sine‐Gordon equation, the sinh‐Gordon equation, the Liouville equation, the cosh‐Gordon equation, the short pulse equation, and the nonlinear Schrödinger equation.  相似文献   

20.
The inverse scattering transform for the derivative nonlinear Schrödinger‐type equation is studied via the Riemann‐Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann‐Hilbert problem is established for the derivative nonlinear Schrödinger‐type equation. In the inverse scattering process, N‐soliton solutions of the derivative nonlinear Schrödinger‐type equation are obtained by solving Riemann‐Hilbert problems corresponding to the reflectionless cases. Moreover, the dynamics of the exact solutions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号