首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new bithiophene imide (BTI)‐based n‐type polymers were synthesized. f‐BTI2‐FT based on a fused BTI dimer showed a smaller band gap, a lower LUMO, and higher crystallinity than s‐BTI2‐FT containing a BTI dimer connected through a single bond. s‐BTI2‐FT exhibited a remarkable electron mobility of 0.82 cm2 V−1 s−1, and f‐BTI2‐FT showed a further improved mobility of 1.13 cm2 V−1 s−1 in transistors. When blended with the polymer donor PTB7‐Th, f‐BTI2‐FT‐based all‐polymer solar cells (all‐PSCs) attained a PCE of 6.85 %, the highest value for an all‐PSC not based on naphthalene (or perylene) diimide polymer acceptors. However, s‐BTI2‐FT all‐PSCs showed nearly no photovoltaic effect. The results demonstrate that f‐BTI2‐FT is one of most promising n‐type polymers and that ring fusion offers an effective approach for designing polymers with improved electrical properties.  相似文献   

2.
Understanding electronic communication among multiple chromophoric and redox units requires construction of well‐defined molecular architectures. Herein, we report the modular synthesis of a shape‐persistent chiral organic square composed of four naphthalene‐1,8:4,5‐bis(dicarboximide) (NDI) sides and four trans‐1,2‐cyclohexanediamine corners. Single crystal X‐ray diffraction reveals some distortion of the cyclohexane chair conformation in the solid state. Analysis of the packing of the molecular squares reveals the formation of highly ordered, one‐dimensional tubular superstructures, held together by means of multiple [C H⋅⋅⋅OC] hydrogen‐bonding interactions. Steady‐state and time‐resolved electronic spectroscopies show strong excited‐state interactions in both the singlet and triplet manifolds. Electron paramagnetic resonance (EPR) and electron‐nuclear double resonance (ENDOR) spectroscopies on the monoreduced state reveal electron sharing between all four NDI subunits comprising the molecular square.  相似文献   

3.
White-light-emitting materials with high mobility are necessary for organic white-light-emitting transistors, which can be used for self-driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures—2-fluorenyl-2-anthracene (FlAnt) with blue emission and 2-anthryl-2-anthracence (2A) with greenish-yellow emission—to fabricate OLED devices, which showed unusual solid-state white-light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm2 V−1 s−1. This simple method provides new insight into the design of high-performance white-emitting transistor materials and structures.  相似文献   

4.
5.
6.
The design and synthesis of high‐performance n‐type organic semiconductors are important for the development of future organic optoelectronics. Facile synthetic routes to reach the K‐region of pyrene and produce 4,5,9,10‐pyrene diimide (PyDI) derivatives are reported. The PyDI derivatives exhibited efficient electron transport properties, with the highest electron mobility of up to 3.08 cm2 V−1 s−1. The tert‐butyl‐substituted compounds (t‐PyDI) also showed good one‐ and two‐photon excited fluorescence properties. The PyDI derivatives are a new family of aromatic diimides that may exhibit both high electron mobility and good light‐emitting properties, thus making them excellent candidates for future optoelectronics.  相似文献   

7.
Blue thermally activated delayed fluorescence (TADF) emitters that can simultaneously achieve high efficiency in doped and nondoped organic light‐emitting diodes (OLEDs) are rarely reported. Reported here is a strategy using a tri‐spiral donor for such versatile blue TADF emitters. Impressively, by simply extending the nonconjugated fragment and molecular length, aggregation‐caused emission quenching (ACQ) can be greatly alleviated to achieve as high as a 90 % horizontal orientation dipole ratio and external quantum efficiencies (EQEs) of up to 33.3 % in doped and 20.0 % in nondoped sky‐blue TADF‐OLEDs. More fascinatingly, a high‐efficiency purely organic white OLED with an outstanding EQE of up to 22.8 % was also achieved by employing TspiroS‐TRZ as a blue emitter and an assistant host. This compound is the first blue TADF emitter that can simultaneously achieve high electroluminescence (EL) efficiency in doped, nondoped sky‐blue, and white TADF‐OLEDs.  相似文献   

8.
Two efficient blue thermally activated delayed fluorescence compounds, B‐oCz and B‐oTC , composed of ortho‐donor (D)–acceptor (A) arrangement were designed and synthesized. The significant intramolecular D–A interactions induce a combined charge transfer pathway and thus achieve small ΔE ST and high efficiencies. The concentration quenching can be effectively inhibited in films of these compounds. The blue non‐doped organic light emitting diodes (OLEDs) based on B‐oTC prepared from solution processes shows record‐high external quantum efficiency (EQE) of 19.1 %.  相似文献   

9.
10.
11.
This study presents a new class of conjugated polycyclic molecules that contain seven‐membered rings, detailing their synthesis, crystal structures and semiconductor properties. These molecules have a nearly flat C6‐C7‐C6‐C7‐C6 polycyclic framework with a p‐quinodimethane core. With field‐effect mobilities of up to 0.76 cm2 V−1 s−1 as measured from solution‐processed thin‐film transistors, these molecules are alternatives to the well‐studied pentacene analogues for applications in organic electronic devices.  相似文献   

12.
Strong dipole–dipole coupling within and between π‐conjugated segments shifts electronic transitions, and modifies vibronic coupling and excited‐state lifetimes. Since J‐type coupling between monomers along the conjugated‐polymer (CP) chain and H‐type coupling of chromophores between chains of a CP compete, a superposition of the spectral modifications arising from each type of coupling emerges, making the two couplings hard to discern in the ensemble. We introduce a single‐molecule H‐type aggregate of fixed spacing and variable length of up to 10 nm. HJ‐type aggregate formation is visualized intuitively in the scatter of single‐molecule spectra.  相似文献   

13.
14.
15.
16.
π‐Conjugated segments, chromophores, are the electronically active units of polymer materials used in organic electronics. To elucidate the effect of the bending of these linear moieties on elementary electronic properties, such as luminescence color and radiative rate, we introduce a series of molecular polygons. The π‐system in these molecules becomes so distorted in bichromophores (digons) that these absorb and emit light of arbitrary polarization: any part of the chain absorbs and emits radiation with equal probability. Bending leads to a cancellation of transition dipole moment (TDM), increasing excited‐state lifetime. Simultaneously, fluorescence shifts to the red as radiative transitions require mixing of the excited state with vibrational modes. However, strain can become so large that excited‐state localization on shorter units of the chain occurs, compensating TDM cancellation. The underlying correlations between shape and photophysics can only be resolved in single molecules.  相似文献   

17.
Two electronically delocalized molecules were designed as models to understand how molecular shape impacts the tradeoff between solubility and crystallization tendencies in molecular semiconductors. The more soluble compound TT contains a non‐planar bithiophene central fragment, whereas CT has a planar cyclopentadithiophene unit. Calorimetry studies show that CT can crystallize more easily than TT . However, absorption spectroscopy shows that the initially amorphous TT film can eventually form crystals in which the molecular shape is significantly more planar. Two thermally reversible polymorphs for TT were observed by XRD and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) measurements. These findings are relevant within the context of designing soft semiconductors that exhibit high solubility and a tendency to provide stable organized structures with desirable electronic properties.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号