首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene nanosheets offer intriguing electronic, thermal and mechanical properties and are expected to find a variety of applications in high‐performance nanocomposite materials. The great challenge of exfoliating and dispersing pristine graphite or graphene sheets in various solvents or matrices can be achieved by facilely and properly chemical functionalization of the carbon nanosheets. Here we reported an efficient way to functionalize graphene sheets with presynthesized polymer via a combination of atom transfer nitroxide radical coupling chemistry with the grafting‐onto strategy, which enable us to functionalize graphene sheets with well‐defined polymer synthesized via living radical polymerization. A radical scavenger species, 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO), was firstly anchored onto ? COOH groups on graphene oxide (GO) to afford TEMPO‐functionalized graphene sheets (GS‐TEMPO), meanwhile, the GO sheets were thermally reduced. Next, GS‐TEMPO reacted with Br‐terminated well‐defined poly(N‐isopropylacrylamide) (PNIPAM) homopolymer, which was presynthesized by SET‐LRP, in the presence of CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine to form PNIPAM‐graphene sheets (GS‐PNIPAM) nanocomposite in which the polymers were covalently linked onto the graphene via the alkoxyamine conjunction points. The PNIPAM‐modified graphene sheets are easily dispersible in organic solvents and water, and a temperature‐induced phase transition was founded in the water suspension of GS‐PNIPAM. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Controlling the chemistry of graphene is necessary to enable applications in materials and life sciences. Research beyond graphene oxide is targeted to avoid the highly defective character of the carbon framework. Herein, we show how to optimize the synthesis of oxo‐functionalized graphene (oxo‐G) to prepare high‐quality monolayer flakes that even allow for direct transmission electron microscopy investigation at atomic resolution (HRTEM). The role of undesired residuals is addressed and sources are eliminated. HRTEM provides clear evidence for the exceptional integrity of the carbon framework of such oxo‐G sheets. The patchy distribution of oxo‐functionality on the nm‐scale, observed on our highly clean oxo‐G sheets, corroborates theoretical predictions. Moreover, defined electron‐beam irradiation facilitates gentle de‐functionalization of oxo‐G sheets, a new route towards clean graphene, which is a breakthrough for localized graphene chemistry.  相似文献   

3.
Functionalized single graphene sheets derived from splitting graphite oxide   总被引:17,自引:0,他引:17  
A process is described to produce single sheets of functionalized graphene through thermal exfoliation of graphite oxide. The process yields a wrinkled sheet structure resulting from reaction sites involved in oxidation and reduction processes. The topological features of single sheets, as measured by atomic force microscopy, closely match predictions of first-principles atomistic modeling. Although graphite oxide is an insulator, functionalized graphene produced by this method is electrically conducting.  相似文献   

4.
The simultaneous polymer functionalization and exfoliation of graphene sheets by using mild bath sonication and heat treatment at low temperature is described. In particular, free‐radical polymerization of three different vinyl monomers takes place in the presence of graphite flakes. The polymerization procedure leads to the exfoliation of graphene sheets and at the same time the growing polymer chains are attached onto the graphene lattice, which gives solubility and stability to the final graphene‐based hybrid material. The polymer‐functionalized graphene sheets possess fewer defects as compared with previously reported polymer‐functionalized graphene. The success of the covalent functionalization and exfoliation of graphene was confirmed by using a variety of complementary spectroscopic, thermal, and microscopy techniques, including Raman, IR and UV/Vis spectroscopy, thermogravimetric analysis, and transmission electron microscopy.  相似文献   

5.
Thiol‐ene click reaction was successfully employed for chemical modification of graphene oxide (GO) by one‐step synthesis. Herein, 2,2‐azobis(2‐methylpropionitrile) (AIBN) was used as thermal catalyst and cysteamine hydrochloride (HS?(CH2)2?NH2HCl) was used as thiol‐containing compound, which is incorporated to GO surface upon reaction with the C=C bonds. The hydrochloride acts as protecting group for the amine, which is finally eliminated by adding sodium hydroxide. The modified GO contains both S‐ and N‐containing groups (NS‐GO). We found that NS‐GO sheets form good dispersion in water, ethanol, and ethylene glycol. These graphene dispersions can be processed into functionalized graphene film. Besides, it was demonstrated that NS‐GO was proved to be an excellent host matrix for platinum nanoparticles. The developed method paves a new way for graphene modification and its functional nanocomposites.  相似文献   

6.
Poly(diallyldimethylammonium chloride) (PDDA) has been employed as a modifying material for the development of new functional materials; then, the functionalized graphene was employed as a support for Pd nanoparticles through a facile method. The structures and morphologies of the as‐synthesized Pd/PDDA–graphene composites were extensively characterized by Raman spectroscopy, XRD, XPS, and TEM. Morphological observation showed that Pd NPs with average diameters of 4.4 nm were evenly deposited over the functionalized graphene sheets. Moreover, the electrochemical experiments indicated that the Pd/PDDA–graphene catalyst showed improved electrocatalytic activity toward alcohol‐oxidation reactions compared to the Pd/graphene and commercial Pd/C systems, as well as previously reported Pd‐based catalysts. This study demonstrates the great potential of PDDA‐functionalized graphene as a support for the development of metal–graphene nanocomposites for important applications in fuel cells.  相似文献   

7.
功能型单层石墨烯的热剥离法制备及其超电容性能   总被引:1,自引:0,他引:1  
以氧化石墨(GO)作为前驱体,在两种不同热剥离温度下制备了两类功能型单层石墨烯.其中第一类功能型单层石墨烯通过在较低温度及空气气氛下热剥离GO制备;第二类功能型单层石墨烯通过在氮气保护下高温热剥离GO得到;利用氮气吸附-脱附方法测定了两类样品的比表面积,利用电化学测试方法分析了其超电容性能.结果表明,通过低温热剥离的方式即可以有效剥离GO;两类样品均具有较高的BET比表面积.低温热剥离GO所制备的功能型单层石墨烯在2 mol/L KOH体系中的最大比电容值约为220 F/g;而通过高温热剥离GO所制备的功能型单层石墨烯虽然同样具有较高的BET比表面积,但其最大比电容值下降至约150 F/g.这表明通过低温热剥离GO所制备的功能型单层石墨烯具有更优异的超电容性能.  相似文献   

8.
Covalently functionalized graphene materials with well‐defined stoichiometric composition are of a very high importance in the research of 2D carbon material family due to their well‐defined properties. Unfortunately, most of the contemporary graphene‐functionalized materials do not have this kind of defined composition and, usually, the amount of heteroatoms bonded to graphene framework is in the range of 1–10 at. %. Herein, we show that by a well‐established hydroboration reaction chain, which introduces ?BH2 groups into the graphene oxide structure, followed by H2O2 or CF3COOH treatment as source of ?OH or ?H, we can obtain highly hydroxylated compounds of precisely defined composition with a general formula (C1O0.78H0.75)n, which we named graphol and highly hydroxylated graphane (C1(OH)0.51H0.14)n, respectively. These highly functionalized materials with an accurately defined composition are highly important for the field of graphene derivatives. The enhanced electrochemical performance towards important biomarkers as well as hydrogen evolution reaction is demonstrated.  相似文献   

9.
KH-570功能化石墨烯的制备与表征   总被引:1,自引:0,他引:1  
采用Hummers法对天然石墨进行氧化处理制备了氧化石墨烯,通过γ-甲基丙烯酰氧丙基三甲氧基硅烷与氧化石墨烯反应得到功能化氧化石墨烯,然后在水合肼的作用下制备了功能化石墨烯。未烘干的功能化石墨烯在超声处理下,能稳定分散在体积比为9∶1(V/V)的乙醇/水、丙酮/水或N,N-二甲基甲酰胺/水的混合溶剂中。用傅立叶变换红外光谱、原子力显微镜、X射线光电子能谱及X射线衍射对样品结构、形貌进行了分析。结果表明,KH-570上的硅氧烷与氧化石墨烯上的羟基发生了反应,经水合肼还原后,功能化石墨烯的无序度增加,层间距也比功能化氧化石墨烯的缩小了。功能化石墨烯在DMF/水中呈高度剥离状态,片层厚度为1.1~2.3 nm。  相似文献   

10.
通过氨基离子液体改性石墨烯,并将其固载于堇青石表面,作为负载型Pd催化剂的载体.所制备的Pd催化剂经加氢老化后,表面石墨烯呈草簇状结构,将Pd纳米粒子限域于片层内,有效防止了Pd的流失和团聚.在重要的工业反应对羧基苯甲醛(4-CBA)加氢中,此结构催化剂与传统的钯碳催化剂相比,表现出很好的稳定性  相似文献   

11.
Excellent dispersion of functionalized graphene (FG) sheets in polystyrene was achieved relying on the reaction of "living" poly(glycidyl phenyl ether) chains onto graphene sheets. The physical aging of polystyrene was substantially accelerated by the presence of FG sheets at low filler content, retaining film transparency and increasing the electrical conductivity.  相似文献   

12.
Nitrogen functionalization of graphene offers new hybrid materials with improved performance for important technological applications. Despite studies highlighting the dependence of the performance of nitrogen‐functionalized graphene on the types of nitrogen functional groups that are present, precise synthetic control over their ratio is challenging. Herein, the synthesis of nitrogen‐functionalized graphene rich in amino groups by a Bucherer‐type reaction under hydrothermal conditions is reported. The efficiency of the synthetic method under two hydrothermal conditions was examined for graphite oxide produced by Hummers and Hofmann oxidation routes. The morphological and structural properties of the amino‐functionalized graphene were fully characterized. The use of a synthetic method with a well‐known mechanism for derivatization of graphene will open new avenues for highly reproducible functionalization of graphene materials.  相似文献   

13.
Herein, design and synthesis of ternary gold nanoparticles@ sulfourea‐functionalized reduced graphene oxide (Gold‐NPs@SFG) is reported. It involves interaction of ‘sulfourea’ to the graphene sheets via amidation of edged carboxyls of graphene oxide with N‐terminals of sulfourea followed by association of Gold‐NPs. Sulfourea not only reduced the graphene oxide but interestingly, it is functionalized to graphene sheets via carbodiimide covalent junctions, which gives it local effect to increase the active surface area and excellent electrocatalytic properties. The prepared nanocomposite was characterized with SEM, TEM, FTIR, Raman, XRD, XPS and CV. Gold‐NPs@SFG was found to be more efficient electrocatalyst for the electrocatalytic oxidation of a drug ‘Acetaminophen’ using differential pulse voltammetry and it was employed as a highly sensitive and selective electrochemical sensor for the quantification of ‘Acetaminophen’ with the detection limit of 0.09 μM in the wide linear range of 1.2 to 300 μM.  相似文献   

14.
Glycine‐functionalized reduced graphene oxide (GRGO) was prepared through the reaction of glycine and chlorine‐functionalized reduced graphene oxide. The product was characterized by SEM, HRTEM, IR, Raman, and XPS. The nitrogen content (8.28%) was high in product, peak at 285.8 eV was assigned to the C–N bond, which implied that the chlorine residues in raw material were substituted by amine group of glycine. The intensity ratio of D and G peak was about 1.5, which also implied that more saturated carbon atoms were present in the product. Results of SEM, IR, and XPS confirmed that glycine molecules were attached to graphene sheets. Compared with reduced graphene oxide (61.5 mg/g) and active carbon (45.2 mg/g), GRGO had a good adsorption capacity (98.9 mg/g) for methylene blue. The adsorption process was fitted to three kinetic models and three adsorption isotherm models. The adsorption process complied with pseudo‐second order kinetic model and Langmuir model.  相似文献   

15.
Preparation and characterization of poly(N‐isopropylacrylamide) (PNIPAM) polymer brushes on the surfaces of reduced graphene oxide (RGO) sheets based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization was reported. RGO sheets prepared by thermal reduction were modified by diazonium salt of propargyl p‐aminobenzoate, and alkyne‐functionalized RGO sheets were obtained. RAFT chain transfer agent (CTA) was grafted to the surfaces of RGO sheets by click reaction. PNIPAM on RGO sheets was prepared by RAFT polymerization. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and transmission electron microscopy (TEM) results all demonstrated that RAFT CTA and PNIPAM were successfully produced on the surfaces of RGO sheets. Nanosized PNIPAM domains on RGO sheets were observed on TEM. Micro‐DSC result indicated that in aqueous solution PNIPAM on RGO sheets presented a lower critical solution temperature at 33.2 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Qiu  Danfeng  Xu  Zijing  Zheng  Mingbo  Zhao  Bin  Pan  Lijia  Pu  Lin  Shi  Yi 《Journal of Solid State Electrochemistry》2012,16(5):1889-1892
Graphene is an excellent substrate to load nanomaterials for energy applications due to its large surface area, excellent conductivity, mechanical strength, and chemical stability. In this study, thermal exfoliated functionalized graphene sheets with good conductivity and high BET surface area are anchored with mesoporous NiO nanoplates by in situ chemical synthesis approach. Electrochemical characterization shows that functionalized graphene sheets–NiO sample exhibits a high capacity of about 700 mAh/g at a discharge current density of 100 mA/g and a good cycling ability. The high capacity and good cycling ability of functionalized graphene sheets –NiO material were attributed to the intimate interaction between the graphene sheets and NiO nanoplates. The graphene sheets not only enhance the conductivity of NiO nanoplates but also improve the structure stability of NiO nanoplates. Furthermore, the mesoporous structure of NiO nanoplates is available to the transfer of electrolyte. Such functionalized graphene sheets–NiO nanocomposite could be a promising candidate material for a high-capacity, low cost, and nontoxic anode for lithium-ion batteries.  相似文献   

17.
Zn2GeO4/N‐doped graphene nanocomposites have been synthesized through a fast microwave‐assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well‐embedded in N‐doped graphene sheets by in situ reducing and doping. Importantly, the N‐doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume‐expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as‐formed Zn2GeO4/N‐doped graphene nanocomposite exhibits high capacity (1463 mAh g?1 at a current density of 100 mA g?1), good cyclability, and excellent rate capability (531 mAh g?1 at a current density of 3200 mA g?1). Its superior lithium‐storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well‐stabilized by the high electronic conduction and flexibility of N‐doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary‐oxide‐based composites as high‐performance electrode materials that involve structural conversion and transformation.  相似文献   

18.
In this work, graphene oxide was functionalized with chitosan (GO‐Chit) followed by a simple approach for immobilization of palladium nanoparticles onto a chitosan grafted graphene oxide surface. The Pd‐nanocomposite (GO‐Chit‐Pd) was characterized using Transmission Electron Microscopy (TEM), Fourier transforms infrared spectroscopy (FT‐IR), and X‐ray diffraction (XRD) measurements. The catalytic activity of the prepared heterogeneous graphene oxide functionalized chitosan‐palladium (GO‐Chit‐Pd) was investigated in term of C‐N coupling reaction (Buchwald‐Hartwig amination reaction of aryl halides) yielding products of N‐arylamines. The easy purification, convenient operation, and environmental friendliness, combined with a high yield, render this method viable for use in both laboratory research and larger industrial scales. Studying the reusability of the catalyst in this work showed that it could be reused for five times without obvious loss in catalytic activity.  相似文献   

19.
Applications of graphene sheets in the fields of biosensors and biomedical devices are limited by their insolubility in water. Consequently, understanding the dispersion mechanism of graphene in water and exploring an effective way to prepare stable dispersions of graphene sheets in water is of vital importance for their application in biomaterials, biosensors, biomedical devices, and drug delivery. Herein, a method for stable dispersion of graphene sheets in water by single‐stranded oligodeoxynucleotides (ssODNs) is studied. Owing to van der Waals interactions between graphene sheets, they undergo layer‐to‐layer (LtL) aggregation in water. Molecular dynamics simulations show that, by disrupting van der Waals interaction of graphene sheets with ssODNs, LtL aggregation of graphene sheets is prevented, and water molecules can be distributed stably between graphene sheets. Thus, graphene sheets are dispersed stably in water in the presence of ssODNs. The effects of size and molarity of ssODNs and noncovalent modification of graphene sheets are also discussed.  相似文献   

20.
Boehmite (AlOOH) sheets were synthesized via a hydrothermal method and then successfully functionalized with a bi‐functional coupling agent, γ‐aminopropyl‐ triethoxysilane (APTES), through a facile neutral solvent method. Scanning electron microscope and transmission electron microscopy images showed a uniform morphology of AlOOH sheets. APTES was found to be covalently bound with AlOOH sheets. The linked APTES can be combined with an epoxy oligomer through a ring opening addition reaction. The modified AlOOH was used as reinforcing agent to reinforce the epoxy resin cured by 4,4‐diaminodiphenylsulfone. The results of tensile and differential scanning calorimetric test revealed the tensile strength and glass transition temperature (Tg) firstly increase and then decrease with the increase of functionalized AlOOH sheets loading. When the loading of functionalized AlOOH sheets increased to 5 parts per hundred resin, the highest tensile strength and Tg were obtained. They are 100.8 MPa and 174.5 °C. Microscopic examinations revealed the presence of large plastic deformations at the micronscale in the formed composites in agreement with the observed strengthening effect of functionalized AlOOH sheets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号