首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
An iridium/bipyridine‐catalyzed ortho ‐selective C−H borylation of aryl sulfides was developed. High ortho ‐selectivity was achieved by a Lewis acid–base interaction between a boryl group of the ligand and a sulfur atom of the substrate. This is the first example of a catalytic and regioselective C−H transformation controlled by a Lewis acid–base interaction between a ligand and a substrate. The C−H borylation reaction could be conducted on a gram scale, and with a bioactive molecule as a substrate, demonstrating its applicability to late‐stage regioselective C−H borylation. A bioactive molecule was synthesized from an ortho ‐borylated product by converting the boryl and methylthio groups of the product.  相似文献   

2.
In protein‐rich environments such as the blood, the formation of a protein corona on receptor‐targeting nanoparticles prevents target recognition. As a result, the ability of targeted nanoparticles to selectively bind to diseased cells is drastically inhibited. Backfilling the surface of a targeted nanoparticle with polyethylene glycol (PEG) molecules is demonstrated to reduce the formation of the protein corona and re‐establishes specific binding. The length of the backfilled PEG molecules must be less than the length of the ligand linker; otherwise, PEG interferes with the binding of the targeting ligand to its corresponding cellular receptor.  相似文献   

3.
The discovery of proper ligands to simultaneously modulate the reactivity and effectively control the stereoselectivity is a central topic in the field of enantioselective C?H activation. Herein, we reported the synthesis of axially chiral biaryls by Pd‐catalyzed atroposelective C?H olefination. A novel chiral spiro phosphoric acid, STRIP, was identified as a superior ligand for this transformation. A broad range of axially chiral quinoline derivatives were synthesized in good yields with excellent enantioselectivities (up to 98 % ee). Density functional theory was used to gain a theoretical understanding of the enantioselectivities in this reaction.  相似文献   

4.
The characterization of protein–ligand interaction modes becomes recalcitrant in the NMR intermediate exchange regime as the interface resonances are broadened beyond detection. Here, we determined the 19F low‐populated bound‐state pseudocontact shifts (PCSs) of mono‐ and di‐fluorinated inhibitors of the BRM bromodomain using a highly skewed protein/ligand ratio. The bound‐state 19F PCSs were retrieved from 19F chemical exchange saturation transfer (CEST) in the presence of the lanthanide‐labeled protein, which was termed the 19F PCS‐CEST approach. These PCSs enriched in spatial information enabled the identification of best‐fitting poses, which agree well with the crystal structure of a more soluble analog in complex with the BRM bromodomain. This approach fills the gap of the NMR structural characterization of lead‐like inhibitors with moderate affinities to target proteins, which are essential for structure‐guided hit‐to‐lead evolution.  相似文献   

5.
A chemoselective C(sp2) F or C(sp3) F bond activation of hexafluoropropylene (HFP) was achieved by adopting the proper combination of a Lewis acid co‐additive with a ligand which coordinates Pd0. The treatment of [(η2‐HFP)Pd(PCy3)2] with B(C6F5)3 allowed a chemoselective C(sp3) F bond cleavage of HFP to give a unique cationic perfluoroallypalladium complex. In this complex, the coordination mode of the perfluoroallyl ligand was considered to be of the unique η2‐fashion.  相似文献   

6.
Introduced here is a new type of strongly donating N‐heterocyclic boryloxy (NHBO) ligand, [(HCDippN)2BO]? (Dipp=2,6‐diisopropylphenyl), which is isoelectronic with the well‐known N‐heterocyclic iminato (NHI) donor class. This 1,3,2‐diazaborole functionalized oxy ligand has been used to stabilize the first acyclic two‐coordinate dioxysilylene and its Ge, Sn, and Pb congeners, thereby presenting the first complete series of heavier group 14 dioxycarbene analogues. All four compounds have been characterized by X‐ray crystallography and density‐functional theory, enabling analysis of periodic trends: the potential for the [(HCDippN)2BO]? ligand to subtly vary its electronic‐donor capabilities is revealed by snapshots showing the gradual evolution of arene π coordination on going from Si to Pb.  相似文献   

7.
In this study, an epitope‐imprinting strategy was employed for the dynamic display of bioactive ligands on a material interface. An imprinted surface was initially designed to exhibit specific affinity towards a short peptide (i.e., the epitope). This surface was subsequently used to anchor an epitope‐tagged cell‐adhesive peptide ligand (RGD: Arg‐Gly‐Asp). Owing to reversible epitope‐binding affinity, ligand presentation and thereby cell adhesion could be controlled. As compared to current strategies for the fabrication of dynamic biointerfaces, for example, through reversible covalent or host–guest interactions, such a molecularly tunable dynamic system based on a surface‐imprinting process may unlock new applications in in situ cell biology, diagnostics, and regenerative medicine.  相似文献   

8.
We describe the development of a Pd‐catalyzed decarboxylative asymmetric allylic alkylation of α‐nitro allyl esters to afford acyclic tetrasubstituted nitroalkanes. Optimization of the reaction parameters revealed unique ligand and solvent combinations crucial for achieving chemo‐ and enantioselective C‐alkylation of electronically challenging benzylic nitronates and sterically encumbered 2‐allyl esters. Substrates were efficiently accessed in a combinatorial fashion by a cross‐Claisen/ α‐arylation sequence. The method provides functional group orthogonality that complements nucleophilic imine allylation strategies for α‐tertiary amine synthesis.  相似文献   

9.
The enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non‐covalent nature of the helical assemblies supporting the copper centers. These assemblies are formed by mixing an achiral benzene‐1,3,5‐tricarboxamide (BTA) phosphine ligand (for copper coordination) and both enantiomers of a chiral phosphine‐free BTA co‐monomer (for chirality amplification). The enantioselectivity of the hydrosilylation reaction is fixed by the BTA enantiomer in excess, which can be altered by simple BTA addition. As a result of the complete and fast stereochemical switch, any combination of the enantiomers was obtained during the conversion of a mixture of two substrates.  相似文献   

10.
11.
The unambiguous characterization of the coordination chemistry of nanocrystal surfaces produced by wet‐chemical synthesis presently remains highly challenging. Here, zinc oxide nanocrystals (ZnO NCs) coated by monoanionic diphenyl phosphate (DPP) ligands were derived by a sol‐gel process and a one‐pot self‐supporting organometallic (OSSOM) procedure. Atomic‐scale characterization through dynamic nuclear polarization (DNP‐)enhanced solid‐state NMR (ssNMR) spectroscopy has notably enabled resolving their vastly different surface‐ligand interfaces. For the OSSOM‐derived NCs, DPP moieties form stable and strongly‐anchored μ2‐ and μ3‐bridging‐ligand pairs that are resistant to competitive ligand exchange. The sol‐gel‐derived NCs contain a wide variety of coordination modes of DPP ligands and a ligand exchange process takes place between DPP and glycerol molecules. This highlights the power of DNP‐enhanced ssNMR for detailed NC surface analysis and of the OSSOM approach for the preparation of ZnO NCs.  相似文献   

12.
A new microtiter‐plate‐based method for the rapid generation and evaluation of focused compound libraries was developed and applied to screening ligand analogues for the E. coli Shiga‐like toxin Stx2a. The method is general, it mitigates the masking of intrinsic affinity gains by multivalency and enables the discovery of potential hits when starting from ligands that exhibit extremely low affinity with proteins that depend on multivalency for their function.  相似文献   

13.
Regiodivergent syntheses of indolo[3,2‐c]coumarins and benzofuro[3,2‐c]quinolinones through a controllable palladium(II)‐catalyzed carbonylative cyclization are established. The chemo‐ and regioselectivity are exclusively tuned by the ligand on the palladium catalyst. The rigid framework of the electron‐deficient ligand promotes the O‐attack/N‐carbonylation cyclization leading to benzofuro[3,2‐c]quinolinones, while a sterically bulky and electron‐rich ligand facilitates N‐attack/O‐carbonylation cyclization to generate indolo[3,2‐c]coumarins. Furthermore, various other nucleophiles are applicable for delivering a variety of indoloquinolinones, pyranoquinolones, and chromeno[3,4‐c]quinolinones in one step, and serves as a method for creating compound libraries for drug discovery.  相似文献   

14.
According to the covalent bond classification (CBC) method, two‐electron donors are defined as L‐type ligands, one‐electron donors as X‐type ligands, and two‐electron acceptors as Z‐type ligands. These three ligand functions are usually associated to the nature of the ligating atom, with phosphine, alkyl, and borane groups being prototypical examples of L‐, X‐ and Z‐ligands, respectively. A new SbNi platform is reported in which the ligating Sb atom can assume all three CBC ligand functions. Using both experimental and computational data, it is shown that PhICl2 oxidation of (o‐(Ph2P)C6H4)3SbNi(PPh3) ( 1 ) into [(o‐(Ph2P)C6H4)3ClSb]NiCl ( 2 ) is accompanied by a conversion of the stibine L‐type ligand of 1 into a stiboranyl X‐type ligand in 2 . Furthermore, the reaction of 2 with the catecholate dianion in the presence of cyclohexyl isocyanide results in the formation of [(o‐(Ph2P)C6H4)3(o‐O2C6H4Sb)]Ni(CNCy) ( 4 ), a complex featuring a nickel atom coordinated by a Lewis acidic, Z‐type, stiborane ligand.  相似文献   

15.
In early drug discovery approaches, screening hits are often weak affinity binders that are difficult to characterize in structural detail, particularly towards obtaining the 3D structure of protein–ligand complexes at atomic resolution. NMR is the outstanding technique to tackle such problems, yet suffers from a tedious structure calculation process. N MR2 was recently developed to alleviate the laborious element of routine NMR structure calculation procedures and provides the structural information at protein–ligand interaction sites orders of magnitude faster than standard procedures. The N MR2 method was extended to weak binders and applied to the oncoproteins HDM2 and MDMX. The structure of the MDMX‐SJ212 complex is reported with a K d of approximately 0.7 μm ; the complex structure of HDM2 with the mm affinity ligand #845 exhibits a new scaffold.  相似文献   

16.
An enantioselective C−H amidation of phosphine oxides by using an iridium(III) catalyst bearing an atropchiral cyclopentadienyl (Cpx) ligand is reported. A very strong cooperative effect between the chiral Cpx ligand and a phthaloyl tert‐leucine enabled the transformation. Matched–mismatched cases of the different acid enantiomers are shown. The amidated P‐chiral arylphosphine oxides are formed in yields of up to 95 % and with excellent enantioselectivities of up to 99:1 er. Enantiospecific reduction provides access to valuable P‐chiral phosphorus(III) compounds.  相似文献   

17.
A ligand‐promoted catalytic [4+2] annulation reaction using indole derivatives and donor‐acceptor (D‐A) cyclobutanes is reported, thus providing an efficient and atom‐economical access to versatile cyclohexa‐fused indolines with excellent levels of diastereoselectivity and a broad substrate scope. In the presence of a chiral SaBOX ligand, excellent enantioselectivity was realized with up to 94 % ee. This novel synthetic method is applied as a general protocol for the total synthesis of (±)‐akuammicine and the formal total synthesis of (±)‐strychnine from the same common‐core scaffold.  相似文献   

18.
Two types of ruthenocenes and a ferrocene coordinated by rac ‐9H ‐cyclopenta[1,2‐c :4,3‐c ′]diphenanthrenyl anion(s), a [7]helicene with a cyclopentadienyl moiety at the center of its skeleton, were successfully synthesized: mono‐helicene ruthenocene 1 and its iron analogue 1Fe with one [7]helicene ligand bound to the central metal, and bis‐helicene ruthenocene 2 with two [7]helicenes. Starting from a racemic mixture of the ligand precursor, rac ‐ 2 and meso ‐ 2 were obtained in a 7:3 ratio. Since the [7]helicene has a high racemization barrier, enantiomers of the complexes were isolated in their pure forms; they showed large optical rotations and intense circular dichroism (CD) responses.  相似文献   

19.
We report a method to construct chiral tetraorganosilicons by tandem silacyclobutane (SCB) desymmetrization–dehydrogenative silylations. A wide array of dibenzosiloles with stereogenic quaternary silicon centers were obtained in good yields and enantioselectivities up to 93 % ee . Chiral TMS‐segphos was found to be a superior ligand in terms of reactivity and enantioselectivity.  相似文献   

20.
We describe here the first general asymmetric synthesis of sterically encumbered α,α‐disubstituted allylic sulfones via Pd‐catalyzed allylic substitution. The design and application of a new and highly efficient phosphoramidite ligand ( L10 ) proved to be crucial, and a wide variety of challenging allylic sulfones featuring quaternary stereocenters could be obtained in good yields and with good to excellent levels of regio‐ and enantioselectivities under attractive process conditions. The developed methodology employs easily accessible chemical feedstock including racemic allylic precursors and sodium sulfinates. The utility of the method is further demonstrated by the synthesis of the sesquiterpene (?)‐Agelasidine A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号