首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylammonium-mediated phase-evolution behavior of FA1−xMAxPbI3 mixed-organic-cation perovskite (MOCP) is studied. It is found that by simply enriching the MOCP precursor solutions with excess methylammonium cations, the MOCPs form via a dynamic composition-tuning process that is key to obtaining MOCP thin films with superior properties. This simple chemical approach addresses several key challenges, such as control over phase purity, uniformity, grain size, composition, etc., associated with the solution-growth of MOCP thin films with targeted compositions.  相似文献   

2.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Tin oxide (SnOx) has been widely used for the fabrication of transparent and flexible devices because of its excellent optical and electronic properties. In this work, we established a methodology for the synthesis of SnOx thin films with p‐type and n‐type tunable conductivity by direct currecnt (DC) magnetron sputtering. The SnOx thin films changed from p‐type to n‐type by increasing the relative oxygen partial pressure (ppO2) from 4.8% to 18.5% and by varying the working pressure between 1.8 and 2.5 mTorr. The SnOx thin films were annealed at 160°C, 180°C, and 200°C for 30 min to promote the formation of the desired crystalline structures. At the annealing temperature of 180°C in air ambient, the SnOx thin films showed a tetragonal structure with Sn traces. Having found the optimal conditions, we deposited both types of SnOx thin films with the same tetragonal structure and similar chemical stoichiometry. Also, the conditions to obtain thin films with the highest mobility values for p‐type (1.10 cm2/Vs) and n‐type (22.20 cm2/Vs) were used for fabricating the device. Finally, the implementation of a SnOx‐based p–n diode was demonstrated using transparent SnOx thin films developed in this work, illustrating their potential use in transparent electronics.  相似文献   

4.
We report herein the discovery of methylamine (CH3NH2) induced defect‐healing (MIDH) of CH3NH3PbI3 perovskite thin films based on their ultrafast (seconds), reversible chemical reaction with CH3NH2 gas at room temperature. The key to this healing behavior is the formation and spreading of an intermediate CH3NH3PbI3?xCH3NH2 liquid phase during this unusual perovskite–gas interaction. We demonstrate the versatility and scalability of the MIDH process, and show dramatic enhancement in the performance of perovskite solar cells (PSCs) with MIDH. This study represents a new direction in the formation of defect‐free films of hybrid perovskites.  相似文献   

5.
The loading of a metal‐organic framework (MOF), [Cu3(btc)2xH2O] HKUST‐1, with europium β‐diketonate complexes is studied with the goal to using the porous molecular framework as a photonic antenna. Whereas loading of HKUST‐1 powder particles produced via the conventional solvothermal synthesis method was strongly hindered, for HKUST‐1 SURMOFs, thin MOF films fabricated using the liquid phase epitaxy method, a high filling factor can be achieved. The optical properties of the HKUST‐1‐MOFs before and after loading were analysed with the aid of luminescence spectroscopy. Careful analysis of the absorption spectra reveals the presence of an effective energy transfer between the HKUST‐1 framework and the Eu3+ centers.  相似文献   

6.
High‐quality phase‐pure MA1?xFAxPbI3 planar films (MA=methylammonium, FA=formamidinium) with extended absorption and enhanced thermal stability are difficult to deposit by regular simple solution chemistry approaches owing to crystallization competition between the easy‐to‐crystallize but unwanted δ‐FAPbI3/MAPbI3 and FAxMA1?xPbI3 requiring rigid crystallization conditions. Here A 2D–3D conversion to transform compact 2D mixed composition HMA1?xFAxPbI3Cl perovskite precursor films into 3D MA1?xFAxPbI3 (x=0.1–0.9) perovskites is presented. The designed Cl/I and H/FA(MA) ion exchange reaction induced fast transformation of compact 2D perovskite film, helping to form the phase‐pure and high quality MA1?xFAxPbI3 without δ‐FAPbI3 and MAPbI3 impurity. In all, we successfully developed a facile one‐step method to fabricate high quality phase‐pure MA1?xFAxPbI3 (x=0.1–0.9) perovskite films by 2D–3D conversion of HMA1?xFAxPbI3Cl perovskite. This 2D–3D conversion is a promising strategy for lead halide perovskite fabrication.  相似文献   

7.
The nitrogen content in tantalum nitride (TaNx) thin films, where x indicates that TaNx is not generally stoechiometric, can be measured directly by XPS. This is the purpose of the present study. However, the XPS spectra of TaNx present electron energy loss spectroscopy (EELS) peaks that lead to a complex peak fitting, particularly for self‐passivated thin films. A complete peak fitting procedure based upon Tougaard's background, the Doniach‐Sunjic Function and EELS peaks, is presented. It is applied to two self‐passivated TaNx thin films elaborated by reactive sputtering and presenting a different nitrogen content. The physical properties of these surfaces are interpreted in terms of Ta 4f7/2 chemical states directly dependent on the nitrogen content. The main results are discussed and improvements are proposed to the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A highly stable 75 wt % BiOClxBr1?x‐loaded alumina composite film has been developed for the fabrication of glass‐based photoreactors. A very simple approach has been adopted that does not involve the use of a special instrument and can be applied to all types of substrates irrespective to their size and shape. The structure and morphology of the films were well characterized by XRD, SEM, TEM, N2‐sorption, IR, Raman, and UV/Vis diffuse reflectance spectroscopy. BiOClxBr1?x microspheres (1–3 μm) with closely packed thin nanoplates (width ≈10 nm) were integrated within alumina to develop a hybrid film. The photocatalytic capacity of the films was evaluated for the decomposition of Rhodamine B (RhB) and naphthalene under visible‐light irradiation. The composite films showed a remarkable photocatalytic activity and stability and have been reused for several cycles without any deterioration of their original activity.  相似文献   

9.
The crystalline phase and composition of sol-gel-derived lead zirconate titanate (PbZr x Ti1 – x O3, PZT) thin films were determined by an X-ray photoelectron spectroscopic (XPS) data processing technique. As a result, it was proved that existence of the surface layer with several tens nm in thickness, of which the crystalline phase and composition were different from those of the inside of the thin films, was found. The newly developed XPS analytical technique is much applicable for the characterization of PZT thin film surface.  相似文献   

10.
The relationship between strain and growth conditions in LaCoO3 thin film was obtained to control the magnetic‐electric characteristics. The LaCoO3 thin films on the SrTiO3 substrates have been achieved by the pulsed laser deposition method, and the reflection high‐energy electron diffraction method (RHEED) was applied to monitor the growth process in situ; the layer‐by‐layer growth mode was discovered. The X‐ray diffraction and atomic force microscopy were applied to the phase analysis, and the layer thickness and the layer‐by‐layer growth mode were uncovered. Compared with the 100‐nm LaCoO3 thin films, the strain in the layer‐by‐layer ultra thin film was more controllable. The enhanced magnetic properties of the layer‐by‐layer mode ultra‐thin films could be tested in future work.  相似文献   

11.
Synthesis Pb1‐xBi4+xTi4‐xMnxO15 compounds (0 ≤ × ≤ 1) were carried out by molten salts method using eutectic mixture of Na2SO4/K2SO4 salts (1:1 molar ratio) as the flux. The samples were characterized by X‐ray powder diffraction and refined by Le Bail method using Rietica program. The refinement results revealed that the compounds with the composition 0 ≤ x ≤ 0.6 formed Aurivillius phase with the space group A21am while the other composition (x ≥ 0.8) showed another phase beside A21am. The ratio b/a of the lattices constants for all the samples are larger than 1 indicating the direction of the orthorhombic along the b axis of their cells. The lattice parameters and volume of the unit cells decrease as the Mn content increasing from x = 0 to 0.6, for x ≥ 0.8 a second phase were observed. The morphologies of Pb1‐xBi4+xTi4‐xMnxO15 samples were observed by SEM and show plate‐like aggregate crystals, typical of layered compounds belonging to the Aurivillius phase.  相似文献   

12.
Nanocrystalline zirconium carbonitride (Zr‐C‐N) and zirconium oxide (ZrO2) films were deposited by chemical vapor deposition (CVD) of zirconium‐tetrakis‐diethylamide (Zr(NEt2)4) and ‐tert‐butyloxide (Zr(OBut)4), respectively. The films were deposited on iron substrates and characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The Zr‐C‐N films show blue, golden brown or bronze colours, with colour stability depending upon the precursor composition (pure metal amide or mixed with Et2NH). The deposition temperature showed no pronounced effect on the granular morphology of the Zr‐C‐N films. The XRD data of the films correspond to the formation of carbonitride phase whereas the XPS analyses revealed a strong surface oxidation and incorporation of oxygen in the film. The films deposited using a mixture of Zr(NEt2)4 and Et2NH showed higher N content, better adhesion and scratch resistance when compared to films obtained from the CVD of pure Zr(NEt2)4. Subject to the precursor composition and deposition temperature (550‐750 °C), the microhardness values of Zr‐C‐N films were found to be in the range 2.11‐5.65 GPa. For ZrO2 films, morphology and phase composition strongly depend on the deposition temperature. The CVD deposits obtained at 350 °C show tetragonal ZrO2 to be the only crystalline phase. Upon increasing the deposition temperature to 450 °C, a mixture of tetragonal and monoclinic modifications was formed with morphology made up of interwoven elongated grains. At higher temperatures (550 and 650 °C), pure monoclinic phase was obtained with facetted grains and developed texture.  相似文献   

13.
The surface morphologies of poly(styrene‐b‐4vinylpyridine) (PS‐b‐P4VP) diblock copolymer and homopolystyrene (hPS) binary blend thin films were investigated by atomic force microscopy as a function of total volume fraction of PS (?PS) in the mixture. It was found that when hPS was added into symmetric PS‐b‐P4VP diblock copolymers, the surface morphology of this diblock copolymer was changed to a certain degree. With ?PS increasing at first, hPS was solubilized into the corresponding domains of block copolymer and formed cylinders. Moreover, the more solubilized the hPS, the more cylinders exist. However, when the limit was reached, excessive hPS tended to separate from the domains independently instead of solubilizing into the corresponding domains any longer, that is, a macrophase separation occurred. A model describing transitions of these morphologies with an increase in ?PS is proposed. The effect of composition on the phase morphology of blend films when graphite is used as a substrate is also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3496–3504, 2004  相似文献   

14.
3D and 2D hybrid perovskites, which have been known for more than 20 years, have emerged recently as promising materials for optoelectronic applications, particularly the 3D compound (CH3NH3)PbI3 (MAPI). The discovery of a new family of hybrid perovskites called d ‐MAPI is reported: the association of PbI2 with both methyl ammonium (MA+) and hydroxyethyl ammonium (HEA+) cations leads to a series of five compounds with general formulation (MA)1−2.48x(HEA)3.48x[Pb1−xI3−x]. These materials, which are lead‐ and iodide‐deficient compared to MAPI while retaining 3D architecture, can be considered as a bridge between the 2D and 3D materials. Moreover, they can be prepared as crystallized thin films by spin‐coating. These new 3D materials appear very promising for optoelectronic applications, not only because of their reduced lead content, but also in account of the large flexibility of their chemical composition through potential substitutions of MA+, HEA+, Pb2+ and I ions.  相似文献   

15.
Amorphous non‐hydrogenated germanium carbide (a‐Ge1?xCx) films have been deposited using magnetron co‐sputtering technique by varying the sputtering power of germanium target (PGe). The effects of PGe on composition and structure of the a‐Ge1?xCx films have been analyzed. The FTIR spectrum shows that the C–Ge bonds were formed in the a‐Ge1?xCx films according to the absorption peak at ~610 cm?1. The Raman results indicate that the amorphous films also contain both Ge and C clusters. The XPS results reveal that the carbon concentration decreased as PGe increased from 40 to 160 W. The fraction of sp3 C–C bonds remains almost constant when increasing PGe from 40 to 160 W. The sp2 C–C content of a‐Ge1?xCx film decreases gradually to 35.9% with PGe up to 160 W. Nevertheless, sp3 C–Ge sites rose with increasing PGe. Furthermore, the hardness and the refractive index gradually increased with increasing PGe. The excellent optical transmission of annealed a‐Ge1–xCx double‐layer coating at 400 °C suggests that a‐Ge1?xCx films can be used as an effective anti‐reflection coating for the ZnS IR window in the wavelength region of 8–12 µm, and can endure higher temperature than hydrogenated amorphous germanium carbide do. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The precise alignment of multiple layers of metal–organic framework (MOF) thin films, or MOF‐on‐MOF films, over macroscopic length scales is presented. The MOF‐on‐MOF films are fabricated by epitaxially matching the interface. The first MOF layer (Cu2(BPDC)2, BPDC=biphenyl‐4,4′‐dicarboxylate) is grown on an oriented Cu(OH)2 film by a “one‐pot” approach. Aligned second (Cu2(BDC)2, BDC=benzene 1,4‐dicarboxylate, or Cu2(BPYDC)2, BPYDC=2,2′‐bipyridine‐5,5′‐dicarboxylate) MOF layers can be deposited using liquid‐phase epitaxy. The co‐orientation of the MOF films is confirmed by X‐ray diffraction. Importantly, our strategy allows for the synthesis of aligned MOF films, for example, Cu2(BPYDC)2, that cannot be grown on a Cu(OH)2 surface. We show that aligned MOF films furnished with Ag nanoparticles show a unique anisotropic plasmon resonance. Our MOF‐on‐MOF approach expands the chemistry of heteroepitaxially oriented MOF films and provides a new toolbox for multifunctional porous coatings.  相似文献   

17.
High dielectric constant is highly desirable in capacitors and memory devices. In this work, oleic acid (OA)‐capped BaTiO3 nanocrystals were synthesized by a two‐phase approach. Polyimide (PI)/BaTiO3‐nanocrystal composite thin films with high dielectric constant have been successfully fabricated. The morphologies and dielectric properties of the hybrid films were exploited. The results showed that BaTiO3 nanocrystals can be uniformly dispersed in the PI thin films owing to the surface modification of OA‐capped BaTiO3 nanocrystals. It was found that the dielectric constant of composite film varies with the volume fraction of BaTiO3 nanocrystals and sintering temperatures and reaches a maximum value of 44.1, which is around 13 times higher than that of pristine PI thin film (3.2). These results demonstrated that PI/BaTiO3‐nanocrystal composite films have considerable application potential in microelectronic fields.  相似文献   

18.
We report the precise postsynthetic control of the composition of β‐Fe1+xSe by electrochemistry with simultaneous tracking of the associated structural changes via in situ synchrotron X‐ray diffraction. We access the full phase width of 0.01<x<0.04 and identify the superconducting state below 8 K, which in contrast to earlier reports is independent of the composition. However, in a second set of in situ X‐ray diffraction experiments, we demonstrate that β‐Fe1+xSe forms a new phase in the presence of oxygen above a 100 °C which has the same anti‐PbO type structure but is not superconducting down to 1.8 K. The latter process can be reversed electrochemically to reinstate the superconducting state. These observations exploit the exquisite control afforded by electrochemistry in contrast with classical approaches of chemical synthesis.  相似文献   

19.
Pb0.4Sr0.6TiO3 (PST) thin films doped with various concentration of Bi were prepared by a sol-gel method. The phase status, surface morphology and dielectric properties of these thin films were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance analyzer, respectively. Results showed that the thin films with the maximum dielectric constant and minimum dielectric loss were obtained for x=0.15. For x<0.15, only pure PST perovskite phase were in the thin films. For 0.2<x<0.4, the PST/Bi2Ti2O7 biphase were obtained. The thin films with pure Bi2Ti2O7 pyrochlore phase were obtained for x=0.67. The biphase thin films had high tunability and high figure of merit (FOM). The FOM of PST/Bi2Ti2O7 biphase thin film was about 6 times higher than that thin films formed with pure perovskite phase or pure pyrochlore phase.  相似文献   

20.
TiO2 thin films with various Mo concentrations have been deposited on glass and n‐type silicon (100) substrates by this radio‐frequency (RF) reactive magnetron sputtering at 400°C substrate temperature. The crystal structure, surface morphology, composition, and elemental oxidation states of the films have been analyzed by using X‐ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy, respectively. Ultraviolet‐visible spectroscopy has been used to investigate the degradation, transmittance, and absorption properties of doped and undoped TiO2 films. The photocatalytic degradation activity of the films was evaluated by using methylene blue under a light intensity of 100 mW cm−2. The X‐ray diffraction patterns show the presence of anatase phase of TiO2 in the developed films. X‐ray photoelectron spectroscopy studies have confirmed that Mo is present only as Mo6+ ions in all films. The Mo/TiO2 band gap decreases from ~3.3 to 3.1 eV with increasing Mo dopant concentrations. Dye degradation of ~60% is observed in Mo/TiO2 samples, which is much higher than that of pure TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号