首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The rate coefficients for gas-phase reaction of trifluoroacetic acid (TFA) with two Criegee intermediates, formaldehyde oxide and acetone oxide, decrease with increasing temperature in the range 240–340 K. The rate coefficients k(CH2OO + CF3COOH)=(3.4±0.3)×10−10 cm3 s−1 and k((CH3)2COO + CF3COOH)=(6.1±0.2)×10−10 cm3 s−1 at 294 K exceed estimates for collision-limited values, suggesting rate enhancement by capture mechanisms because of the large permanent dipole moments of the two reactants. The observed temperature dependence is attributed to competitive stabilization of a pre-reactive complex. Fits to a model incorporating this complex formation give k [cm3 s−1]=(3.8±2.6)×10−18 T2 exp((1620±180)/T) + 2.5×10−10 and k [cm3 s−1]=(4.9±4.1)×10−18 T2 exp((1620±230)/T) + 5.2×10−10 for the CH2OO + CF3COOH and (CH3)2COO + CF3COOH reactions, respectively. The consequences are explored for removal of TFA from the atmosphere by reaction with biogenic Criegee intermediates.  相似文献   

2.
The rate constant for the reaction of the hydroxyl radical with 1,1,1,3,3-pentafluorobutane (HFC-365mfc) has been determined over the temperature range 278–323K using a relative rate technique. The results provide a value of k(OH+CF3CH2CF2CH3)=2.0×10−12exp(−1750±400/T) cm3 molecule−1 s−1 based on k(OH+CH3CCl3)=1.8×10−12 exp (−1550±150/T) cm3 molecule−1 s−1 for the rate constant of the reference reaction. Assuming the major atmospheric removal process is via reaction with OH in the troposphere, the rate constant data from this work gives an estimate of 10.8 years for the tropospheric lifetime of HFC-365mfc. The overall atmospheric lifetime obtained by taking into account a minor contribution from degradation in the stratosphere, is estimated to be 10.2 years. The rate constant for the reaction of Cl atoms with 1,1,1,3,3-pentafluorobutane was also determined at 298±2 K using the relative rate method, k(Cl+CF3CH2CF2CH3)=(1.1±0.3)×10−15 cm3 molecule−1 s−1. The chlorine initiated photooxidation of CF3CH2CF2CH3 was investigated from 273–330 K and as a function of O2 pressure at 1 atmosphere total pressure using Fourier transform infrared spectroscopy. Under all conditions the major carbon-containing products were CF2O and CO2, with smaller amounts of CF3O3CF3. In order to ascertain the relative importance of hydrogen abstraction from the (SINGLE BOND)CH2(SINGLE BOND) and (SINGLE BOND)CH3 groups in CF3CH2CF2CH3, rate constants for the reaction of OH radicals and Cl atoms with the structurally similar compounds CF3CH2CCl2F and CF3CH2CF3 were also determined at 298 K k(OH+CF3CH2CCl2F)=(8±3)×10−16 cm3 molecule−1 s−1; k(OH+CF3CH2CF3)=(3.5±1.5)×10−16 cm3 molecule−1 s−1; k(Cl+CF3CH2CCl2F)=(3.5±1.5)×10−17 cm3 molecule−1 s−1]; k(Cl+CF3CH2CF3)<1×10−17 cm3 molecule−1 s−1. The results indicate that the most probable site for H-atom abstraction from CF3CH2CF2CH3 is the methyl group and that the formation of carbonyl compounds containing more than a single carbon atom will be negligible under atmospheric conditions, carbonyl difluoride and carbon dioxide being the main degradation products. Finally, accurate infrared absorption cross-sections have been measured for CF3CH2CF2CH3, and jointly used with the calculated overall atmospheric lifetime of 10.2 years, in the NCAR chemical-radiative model, to determine the radiative forcing of climate by this CFC alternative. The steady-state Halocarbon Global Warming Potential, relative to CFC-11, is 0.17. The Global Warming Potentials relative to CO2 are found to be 2210, 790, and 250, for integration time-horizons of 20, 100, and 500 years, respectively. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
Criegee intermediates are thought to play roles in atmospheric chemistry, including OH radical formation, oxidation of SO2, NO2, etc. CH2OO is the simplest Criegee intermediate, of which the reactivity has been a hot topic. Here we investigated the kinetics of CH2OO reaction with dimethyl sulfoxide (DMSO) under 278–349 K and 10–150 Torr. DMSO is an important species formed in the oxidation of dimethyl sulfide in the biogenic sulfur cycle. The concentration of CH2OO was monitored in real-time via its mid-infrared absorption band at about 1,286 cm−1 (Q branch of the ν4 band) with a high-resolution quantum cascade laser spectrometer. The 298 K bimolecular rate coefficient was determined to be k298 = (2.3 ± 0.3) × 10−12 cm3/s at 30 Torr with an Arrhenius activation energy of −3.9 ± 0.2 kcal/mol and a weak pressure dependence for pressures higher than 30 Torr (k298 = (2.8 ± 0.3) × 10−12 cm3/s at 100 Torr). The reaction is speculated to undergo a five-membered ring intermediate, analogous to that of CH2OO with SO2. The negative activation energy indicates that the rate-determining transition state is submerged. The magnitude of the reaction rate coefficient lies in between those of CH2OO reactions with (CH3)2CO and with SO2.  相似文献   

4.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

5.
The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of +2-butanol (2BU, CH3CH2CH(OH)CH3) and 2-pentanol (2PE, CH3CH2CH2CH(OH)CH3). 2BU and 2PE react with OH yielding bimolecular rate constants of (8.1±2.0)×10−12 cm3molecule−1s−1 and (11.9±3.0)×10−12 cm3molecule−1s−1, respectively, at 297±3 K and 1 atmosphere total pressure. Both 2BU and 2PE OH rate constants reported here are in agreement with previously reported values [1–4]. In order to more clearly define these alcohols' atmospheric reaction mechanisms, an investigation into the OH+alcohol reaction products was also conducted. The OH+2BU reaction products and yields observed were: methyl ethyl ketone (MEK, (60±2)%, CH3CH2C((DOUBLEBOND)O)CH3) and acetaldehyde ((29±4)% HC((DOUBLEBOND)O)CH3). The OH+2PE reaction products and yields observed were: 2-pentanone (2PO, (41±4)%, CH3C((DOUBLEBOND)O)CH2CH2CH3), propionaldehyde ((14±2)% HC((DOUBLEBOND)O)CH2CH3), and acetaldehyde ((40±4)%, HC((DOUBLEBOND)O)CH3). The alcohols' reaction mechanisms are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. Labeled (18O) 2BU/OH reactions were conducted to investigate 2BU's atmospheric transformation mechanism details. The findings reported here can be related to other structurally similar alcohols and may impact regulatory tools such as ground level ozone-forming potential calculations (incremental reactivity) [5]. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 745–752, 1998  相似文献   

6.
The reaction mechanism of the reaction of the Criegee intermediate CH2OO with NO2 was investigated using quantum chemical and theoretical kinetic methodologies. The reaction shows a rich chemistry, though the number of channels that effectively contribute at room temperature is limited. The theoretical characterization of the entrance transition states was hampered by strongly multireference wave functions. The predicted rate coefficient k (298 K) = 4.4 × 10−12 cm3 molecule−1 s−1 thus carries a large uncertainty, but is in agreement with literature data. We find that the CH2OO + NO2 reaction reacts by adduct formation, near‐exclusively forming nitro‐peroxy radicals, OOCH2NO2. These will react as other alkylperoxy radicals in the atmosphere, ultimately generating CH2O and regenerating NO2 in most reaction conditions. The product predictions contrast with earlier experimental work showing NO3 formation, but support other observations of adduct products.  相似文献   

7.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

8.
The reaction of CF3 with NO2 was studied at 296 ± 2K using two different absolute techniques. Absolute rate constants of (1.6 ± 0.3) × 10−11 and (2.1 −0.3+07) × 10−11 cm3 molecule−1 s−1 were derived by IR fluorescence and UV absorption spectroscopy, respectively. The reaction proceeds via two reaction channels: CF3 + NO2 → CF2O + FNO, (70 ± 12)% and CF3 + NO2 → CF3O + NO, (30 ± 12)%. An upper limit of 11% for formation of other reaction products was determined. The overall rate constant was within the uncertainty independent of total pressure between 0.4 to 760 torr. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The atmospheric chemistry of methyl ethyl ether, CH3CH2OCH3, was examined using FT‐IR/relative‐rate methods. Hydroxyl radical and chlorine atom rate coefficients of k (CH3CH2OCH3+OH) = (7.53 ± 2.86) × 10−12 cm3 molecule−1 s−1 and k (CH3CH2OCH3+Cl) = (2.35 ± 0.43) × 10−10 cm3 molecule−1 s−1 were determined (297 ± 2 K). The Cl rate coefficient determined here is 30% lower than the previous literature value. The atmospheric lifetime for CH3CH2OCH3 is approximately 2 days. The chlorine atom–initiated oxidation of CH3CH2OCH3 gives CH3C(O)H (9 ± 2%), CH3CH2OC(O)H (29 ± 7%), CH3OC(O)H (19 ± 7%), and CH3C(O)OCH3 (17 ± 7%). The IR absorption cross section for CH3CH2OCH3 is (7.97 ± 0.40) × 10−17 cm molecule−1 (1000–3100 cm−1). CH3CH2OCH3 has a negligible impact on the radiative forcing of climate.  相似文献   

10.
The reaction of NO with the peroxy radical CFCl2CH2O2, and with CH3CFClO2 was investigated at 8(SINGLEBOND)20 torr and 263(SINGLEBOND)321 K by UV flash photolysis of CFCl2CH3/O2/NO gas mixtures. The kinetics were determined from observations of the growth rate of the CFCl2CH2O radical and the decay rate of NO by time-resolved mass spectrometry. The temperature dependence of the bimolecular rate coefficients, with their statistical uncertainties, can be expressed as (2.9 ± 0.7) e(435±96)/T × 10−12 cm3 molecule −1s−1, or (1.3 ± 0.2) (T/300)&minus(1.5±0.2) × 10−11 cm3 molecule−1 s−1 for NO + CFCl2CH2O2, and (3.3 ± 0.6)e(516±73)/T × 10−12 cm3 molecule−1 s−1, or (2.0 ± 0.3) (T/300)&minus(1.8±0.3) × 10−11 cm3 molecule−1 s−1 for NO + CH3CFClO2. No pressure dependence of the rate coefficients could be detected over the 8(SINGLEBOND)20 torr range investigated. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Reactions of OH and OD radicals with CH3C(O)SH, HSCH2CH2SH, and (CH3)3CSH were studied at 298 K in a fast-flow reactor by infrared emission spectroscopy of the water product molecules. The rate constants (1.3 ± 0.2) × 10−11 cm3 molecule−1 s−1 for the OD + CH3C(O)SH reaction and (3.8 ± 0.7) × 10−11 cm3 molecule−1 s−1 for the OD + HSCH2CH2SH reaction were determined by comparing the HOD emission intensity to that from the OD reaction with H2S, and this is the first measurement of these rate constants. In the same manner, using the OD + (C2H5)2S reference reaction, the rate constant for the OD + (CH3)3CSH reaction was estimated to be (3.6 ± 0.7) × 10−11 cm3 molecule−1 s−1. Vibrational distributions of the H2O and HOD molecules from the title reactions are typical for H-atom abstraction reactions by OH radicals with release of about 50% of the available energy as vibrational energy to the water molecule in a 2:1 ratio of stretch and bend modes.  相似文献   

12.
The kinetics of the reactions CH3O + Cl → H2CO + HCl (1) and CH3O + ClO → H2CO + HOCl (2) have been studied using the discharge-flow techniques. CH3O was monitored by laser-induced fluorescence, whereas mass spectrometry was used for the detection or titration of other species. The rate constants obtained at 298 K are: k1 = (1.9 ± 0.4) × 10−11 cm3 molecule−1 s−1 and k2 = (2.3 ± 0.3) × 10−11 cm3 molecule−1 s−1. These data are useful to interpret the results of the studies of the reactions of CH3O2 with Cl and ClO which, at least partly, produce CH3O radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Real-time kinetic measurements are reported for the Cl + CH3CO → CH2CO + HCl reaction. The experiments utilize infrared spectroscopy to determine the time dependence of the ketene formed via this reaction and of the CO produced from the subsequent rapid reaction between chlorine atoms and ketene. The reaction is investigated over a pressure range of 10–200 torr and a temperature range of 215–353 K. Within experimental error the rate constant under these conditions is k5a = (1.8 ± 0.5) × 10−10 cm3 s−1. We have also examined the Cl + CH2CO reaction and found it to have a rate constant of k6 = (2.5 ± 0.5) × 10−10 cm3 s−1 independent of temperature. © John Wiley & Sons, Inc. Int J Chem Kinet 29: 421–429, 1997.  相似文献   

14.
A jet-stream kinetic technique and the resonance fluorescence method applied to detection of iodine atoms were used to measure the rate constants of the reactions of the IO· radical with the halohydrocarbons CHFCl-CF2Cl (k = (3.2 ± 0.9) × 10?16 cm3 molecule s?1) and CH2ClF (k = (9.4 ± 1.3) × 10?16 cm3 molecule s?1), the hydrogen-containing haloethers CF3-O-CH3 (k = (6.4 ± 0.9) × 10?16 cm3 molecule s?1) and CF3CH2-O-CHF2 (k = (1.2 ± 0.6) × 10?15 cm3 molecule s?1), and hydrogen iodide (k = (1.3 ± 0.9) × 10?12 cm3 molecule s?1) at 323 K.  相似文献   

15.
Rate coefficients for the reactions of OH with n, s, and iso-butanol have been measured over the temperature range 298 to ∼650 K. The rate coefficients display significant curvature over this temperature range and bridge the gap between previous low-temperature measurements with a negative temperature dependence and higher temperature shock tube measurements that have a positive temperature dependence. In combination with literature data, the following parameterizations are recommended: k1,OH + n-butanol(T) = (3.8 ± 10.4) × 10−19T2.48 ± 0.37exp ((840 ± 161)/T) cm3 molecule−1 s−1 k2,OH + s-butanol(T) = (3.5 ± 3.0) × 10−20T2.76 ± 0.12exp ((1085 ± 55)/T) cm3 molecule−1 s−1 k3,OH + i-butanol(T) = (5.1 ± 5.3) × 10−20T2.72 ± 0.14exp ((1059 ± 66)/T) cm3 molecule−1 s−1 k4,OH + t-butanol(T) = (8.8 ± 10.4) × 10−22T3.24 ± 0.15exp ((711 ± 83)/T) cm3 molecule−1 s−1 Comparison of the current data with the higher shock tube measurements suggests that at temperatures of ∼1000 K, the OH yields, primarily from decomposition of β-hydroxyperoxy radicals, are ∼0.3 (n-butanol), ∼0.3 (s-butanol) and ∼0.2 (iso-butanol) with β-hydroxyperoxy decompositions generating OH, and a butene as the main products. The data suggest that decomposition of β-hydroxyperoxy radicals predominantly occurs via OH elimination.  相似文献   

16.
The reaction Cl + CH3CHO → HCl + CH3CO (1) was studied using flash photo‐lysis / tunable diode laser absorption spectroscopy to monitor the production of HCl. The rate coefficient, k1, was measured to be (7.5 ± 0.8) × 10−11 cm3 molecule−1 s−1 at 298 K. HCl (v = 0) and HCl (v = 1) were measured directly in this study and the yields of HCl (v = 0, 1, >1) for the reaction of Cl with CH3CHO were determined to be 0.44 ± 0.15, 0.56 ± 0.15, and <0.04, respectively. The rate coefficient for the quenching of HCl (v = 1) by CH3CHO was k17e = (4.8 ± 1.2) × 10−11 cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 766–775, 1999  相似文献   

17.
A discharge flow reactor coupled to a laser-induced fluorescence (LIF) detector and a mass spectrometer was used to study the kinetics of the reactions CH3O+Br→products (1) and CH3O+BrO→products (2). From the kinetic analysis of CH3O by LIF in the presence of an excess of Br or BrO, the following rate constants were obtained at 298 K: k1=(7.0±0.4)×10−11 cm3 molecule−1 s−1 and k2=(3.8±0.4)×10−11 cm3 molecule−1 s−1. The data obtained are useful for the interpretation of other laboratory studies of the reactions of CH3O2 with Br and BrO. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 249–255, 1998.  相似文献   

18.
The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of hexamethyldisiloxane (MM, (CH3)3Si-O-Si(CH3)3), octamethyltrisiloxane (MDM, (CH3)3Si-O-Si(CH3)2-O-Si(CH3)3), and decamethyltetrasiloxane (MD2M, (CH3)3Si-O-Si(CH3)2-O-Si(CH3)2-O-Si(Ch3)3). Hexamethyldisiloxane, octamethyltrisiloxane, and decamethyltetrasiloxane react with OH with bimolecular rate constants of 1.32 ± 0.05 × 10−12 cm3molecule−1s−1, 1.83 ± 0.09 × 10−12 cm3 molecule−1s−1, and 2.66 ± 0.13 × 10−12 cm3molecule−1s−1, respectively. Investigation of the OH + siloxane reaction products yielded trimethylsilanol, pentamethyldisiloxanol, heptamethyltetrasiloxanol, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and other compounds. Several of these products have not been reported before because these siloxanes and the proposed reaction mechanisms yielding these products are complicated. Some unusual cyclic siloxane products were observed and their formation pathways are discussed in light of current understanding of siloxane atmospheric chemistry. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 445–451, 1997.  相似文献   

19.
Rate coefficients are directly determined for the reactions of the Criegee intermediates (CI) CH2OO and CH3CHOO with the two simplest carboxylic acids, formic acid (HCOOH) and acetic acid (CH3COOH), employing two complementary techniques: multiplexed photoionization mass spectrometry and cavity‐enhanced broadband ultraviolet absorption spectroscopy. The measured rate coefficients are in excess of 1×10?10 cm3 s?1, several orders of magnitude larger than those suggested from many previous alkene ozonolysis experiments and assumed in atmospheric modeling studies. These results suggest that the reaction with carboxylic acids is a substantially more important loss process for CIs than is presently assumed. Implementing these rate coefficients in global atmospheric models shows that reactions between CI and organic acids make a substantial contribution to removal of these acids in terrestrial equatorial areas and in other regions where high CI concentrations occur such as high northern latitudes, and implies that sources of acids in these areas are larger than previously recognized.  相似文献   

20.
The rate coefficients for the removal of Cl atoms by reaction with three HCFCs, CF3CHCl2 (HCFC-123), CF3CHFCl (HCFC-124), and CH3CFCl2 (HCFC 141b), were measured as a function of temperature between 276 and 397 K. CH3CF2Cl (HCFC-142b) was studied only at 298 K. The Arrhenius expressions obtained are: k1 = (3.94 ± 0.84)× 10?12 exp[?(1740 ± 100)/T] cm3 molecule?1 s?1 for CF3CHCl2 (HCFC 123); k2 = (1.16 ± 0.41) × 10?12 exp[?(1800 ± 150)/T] cm3 molecule?1 s?1 for CF3CHFCl (HCFC 124); and k3 = (1.6 ± 1.1) × 10?12 exp[?(1800 ± 500)/T] cm3 molecule?1 s?1 for CH3CFCl2 (HCFC 141b). In case of HCFC 141b, non-Arrhenius behavior was observed at temperatures above ca. 350 K and is attributed to the thermal decomposition of CH2CFCl2 product into Cl + CH2CFCl. In case of HCFC-142b, only an upper limit for the 298 K value of the rate coefficient was obtained. The atmospheric significance of these results are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号