首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Black phosphorus (BP) has recently drawn attention in photocatalysis for its optical properties. However, limited by the rapid recombination of photogenerated carriers, the use of BP for photocatalytic water splitting still remains a huge challenge. Herein, we prepare a black/red phosphorus (BP/RP) hetero‐phase junction photocatalyst by a wet‐chemistry method to promote the interfacial charge separation and thus achieve Z‐scheme photocatalytic water splitting without using sacrificial agents. The Z‐scheme mechanism was confirmed by time‐resolved transient absorption spectroscopy. This work provides a novel insight into the interface design of hetero‐phase junction with atomic precision.  相似文献   

2.
The charge transfer between hydrogen evolution photocatalysts (HEPs) and oxygen evolution photocatalysts (OEPs) is the rate‐determining step that controls the overall performance of a Z‐scheme water‐splitting system. Here, we carefully design reduced graphene oxide (RGO) nanosheets for use as solid‐state mediators to accelerate the charge carrier transfer between HEPs (e.g., polymeric carbon nitride (PCN)) and OEPs (e.g., Fe2O3), thus achieving efficient overall water splitting. The important role of RGO could also be further proven in other PCN‐based Z‐systems (BiVO4/RGO/PCN and WO3/RGO/PCN), illustrating the universality of this strategy.  相似文献   

3.
Hollow structures with an efficient light harvesting and tunable interior component offer great advantages for constructing a Z‐scheme system. Controlled design of hollow cobalt sulfide (Co9S8) cubes embedded with cadmium sulfide quantum dots (QDs) is described, using hollow Co(OH)2 as the template and a one‐pot hydrothermal strategy. The hollow CdS/Co9S8 cubes utilize multiple reflections of light in the cubic structure to achieve enhanced photocatalytic activity. Importantly, the photoexcited charge carriers can be effectively separated by the construction of a redox‐mediator‐free Z‐scheme system. The hydrogen evolution rate over hollow CdS/Co9S8 is 134 and 9.1 times higher than that of pure hollow Co9S8 and CdS QDs under simulated solar light irradiation, respectively. Moreover, this is the first report describing construction of a hollow Co9S8 based Z‐scheme system for photocatalytic water splitting, which gives full play to the advantages of light‐harvesting and charges separation.  相似文献   

4.
Electrocatalytic water splitting into H2 and O2 is a key technology for carbon‐neutral energy. Here, we report a modular materials design leading to noble metal‐free composite electrocatalysts, which combine high electrical conductivity, high OER and HER reactivity and high durability. The scalable bottom‐up fabrication allows the stable deposition of mixed metal oxide nanostructures with different functionalities on copper foam electrodes. The composite catalyst shows sustained OER and HER activity in 0.1 m aqueous KOH over prolonged periods (t>10 h) at low overpotentials (OER: ≈300 mV; HER: ≈100 mV) and high faradaic efficiencies (OER: ≈100 %, HER: ≈98 %). The new synthetic concept will enable the development of multifunctional, mixed metal oxide composites as high‐performance electrocatalysts for challenging energy conversion and storage reactions.  相似文献   

5.
6.
The aluminum‐based metal–organic framework (MOF) made from 2‐aminoterephthalate is a photocatalyst for oxygen evolution. This MOF can be modified by incorporating Ni2+ cations into the pores through coordination to the amino groups, and the resulting MOF is an efficient photocatalyst for overall water splitting.  相似文献   

7.
Conjugated carbon nitride (CN) is an emerging and promising semiconductor photocatalyst for water photolysis owing to its unique properties. However, the traditional thermally induced polymerization of N‐containing precursors typically produces melon‐based CN solids with amorphous or semi‐crystalline structures with only moderate photocatalytic performance. Many strategies have been developed to prepare crystalline CNs (CCNs), such as high‐temperature and high‐pressure routes, ionothermal synthesis, and microwave‐assisted synthesis. In this Minireview, we summarize the progress that has been made in the synthesis of CCNs and their application in photocatalytic water splitting reactions. Three kinds of CCNs are mainly discussed according to their polymeric subunits. Challenges associated with CCNs and their future development are also included.  相似文献   

8.
A series of heteroleptic copper(I) complexes with bidentate $\widehat{PP}$ and $\widehat{NN}$ chelate ligands was prepared and successfully applied as photosensitizers in the light‐driven production of hydrogen, by using [Fe3(CO)12] as a water‐reduction catalyst (WRC). These systems efficiently reduces protons from water/THF/triethylamine mixtures, in which the amine serves as a sacrificial electron donor (SR). Turnover numbers (for H) up to 1330 were obtained with these fully noble‐metal‐free systems. The new complexes were electrochemically and photophysically characterized. They exhibited a correlation between the lifetimes of the MLCT excited state and their efficiency as photosensitizers in proton‐reduction systems. Within these experiments, considerably long excited‐state lifetimes of up to 54 μs were observed. Quenching studies with the SR, in the presence and absence of the WRC, showed that intramolecular deactivation was more efficient in the former case, thus suggesting the predominance of an oxidative quenching pathway.  相似文献   

9.
10.
Constructing hollow multi‐shelled structures (HoMSs) has a significant effect on promoting light absorption property of catalysts and enhancing their performance in solar energy conversion applications. A facile hydrothermal method is used to design the SrTiO3?TiO2 heterogeneous HoMSs by hydrothermal crystallization of SrTiO3 on the surface of the TiO2 HoMSs, which will realize a full coverage of SrTiO3 on the TiO2 surface and construct the SrTiO3/TiO2 junctions. The broccoli‐like SrTiO3?TiO2 heterogeneous HoMSs exhibited a fourfold higher overall water splitting performance of 10.6 μmol h?1 for H2 production and 5.1 μmol h?1 for O2 evolution than that of SrTiO3 nanoparticles and the apparent quantum efficiency (AQE) of 8.6 % at 365 nm, which can be mainly attributed to 1) HoMS increased the light absorption ability of the constructed photocatalysts and 2) the SrTiO3?TiO2 junctions boosted the separation efficiency of the photogenerated charge carriers.  相似文献   

11.
Black phosphorus (BP), a star‐shaped two‐dimensional material, has attracted considerable attention owing to its unique chemical and physical properties. BP shows great potential in photocatalysis area because of its excellent optical properties; however, its applications in this field have been limited to date. Now, a Z‐scheme heterojunction of 2D/2D BP/monolayer Bi2WO6 (MBWO) is fabricated by a simple and effective method. The BP/MBWO heterojunction exhibits enhanced photocatalytic performance in photocatalytic water splitting to produce H2 and NO removal to purify air; the highest H2 evolution rate of BP/MBWO is 21042 μmol g?1, is 9.15 times that of pristine MBWO and the NO removal ratio was as high as 67 %. A Z‐scheme photocatalytic mechanism is proposed based on monitoring of .O2?, .OH, NO2, and NO3? species in the reaction. This work broadens applications of BP and highlights its promise in the treatment of environmental pollution and renewable energy issues.  相似文献   

12.
13.
Directly splitting water into H2 and O2 with solar light is extremely important; however, the overall efficiency of water splitting still remains extremely low. Two types of ultrathin semiconductor layers with the same elements and the same thicknesses were designed to uncover how different atomic arrangements influence water‐splitting efficiency thermodynamically and kinetically. As an example, tetrahedrally coordinated blende and octahedrally coordinated rocksalt CoO atomic layers with nearly the same thicknesses were synthesized for the first time. The blende CoO atomic layers have a smaller Eg and abundant d–d internal transition features relative to the rocksalt CoO atomic layers, which ensure enhanced visible‐light harvesting ability. Density functional theory calculations reveal that the Bader charge for Co atoms in blende CoO atomic layers is larger than that of the rocksalt CoO atomic layers, which facilitates photocarrier transfer kinetics, as verified by photoluminescence spectra and time‐resolved fluorescence emission decay spectra. In situ FTIR spectra and energy calculations reveal that the *OOH dissociation step is the rate‐limiting step, where the blende CoO atomic layers possess a smaller *OOH dissociation energy thanks to their higher Bader charge and stronger steric effect, as confirmed by the elongated Co?OOH bonds. The blende CoO atomic layers exhibit visible‐light‐driven H2 and O2 formation rates of 4.43 and 2.63 μmol g?1 h?1, roughly 3.7 times higher than those of the rocksalt CoO atomic layers.  相似文献   

14.
An active and stable photocatalyst to directly split water is desirable for solar‐energy conversion. However, it is difficult to accomplish overall water splitting without sacrificial electron donors. Herein, we demonstrate a strategy via constructing a single site to simultaneously promote charge separation and catalytic activity for robust overall water splitting. A single Co1‐P4 site confined on g‐C3N4 nanosheets was prepared by a facile phosphidation method, and identified by electron microscopy and X‐ray absorption spectroscopy. This coordinatively unsaturated Co site can effectively suppress charge recombination and prolong carrier lifetime by about 20 times relative to pristine g‐C3N4, and boost water molecular adsorption and activation for oxygen evolution. This single‐site photocatalyst exhibits steady and high water splitting activity with H2 evolution rate up to 410.3 μmol h−1 g−1, and quantum efficiency as high as 2.2 % at 500 nm.  相似文献   

15.
16.
17.
For overall water-splitting systems, it is essential to establish O2-insensitive cathodes that allow cogeneration of H2 and O2. An acid-tolerant electrocatalyst is described, which employs a Mo-coating on a metal surface to achieve selective H2 evolution in the presence of O2. In operando X-ray absorption spectroscopy identified reduced Pt covered with an amorphous molybdenum oxyhydroxide hydrate with a local structural order composed of polyanionic trimeric units of molybdenum(IV). The Mo layer likely hinders O2 gas permeation, impeding contact with active Pt. Photocatalytic overall water splitting proceeded using MoOx/Pt/SrTiO3 with inhibited water formation from H2 and O2, which is the prevailing back reaction on the bare Pt/SrTiO3 photocatalyst. The Mo coating was stable in acidic media for multiple hours of overall water splitting by membraneless electrolysis and photocatalysis.  相似文献   

18.
19.
20.
A highly efficient bifunctional metal‐free catalyst was prepared by growth of three‐dimensional porous fluorographdiyne networks on carbon cloth (p‐FGDY/CC). Our experiments and density functional theory (DFT) calculations show the 3D p‐FGDY/CC network is highly active and it is a high potential metal‐free catalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), as well as overall water splitting (OWS) under both acidic and alkaline conditions. The experimental and theoretical results show very good consistency; for example, in the HER process, p‐FGDY/CC exhibits small overpotentials of 82 and 92 mV to achieve 10 mA cm?2 under alkaline and acidic conditions, respectively. This ensures an even higher selectivity for the adsorption/desorption of various O/H intermediate species. The essential key promotion accomplishes a bifunctional H2O redox performance application under pH‐universal electrochemical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号