首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Strecker synthesis has long been considered one of the prebiotic reactions for the synthesis of α‐amino acids. However, the correlation between the origin of chirality and highly enantioenriched α‐amino acids through this method remains a puzzle. In the reaction, it may be conceivable that the handedness of amino acids has been determined at the formation stage of the chiral intermediate α‐aminonitrile, that is, the enantioselective addition of hydrogen cyanide to an imine. Herein, an enantiotopic crystal surface of an achiral imine acted as an origin of chirality for the enantioselective formation of α‐aminonitriles by the addition of HCN. In conjunction with the amplification of the enantiomeric excess and multiplication of enantioenriched aminonitrile, a large amount of near enantiopure α‐amino acids, with the l ‐ and d ‐handedness corresponding to the molecular orientation of the imine, is reported.  相似文献   

2.
Symmetry breaking is observed in the Soai reaction in a confinement environment provided by zirconium-based UiO-MOFs used as crystalline sponges. Subsequent reaction of encapsulated Soai aldehyde with Zn(i-Pr)2 vapour promoted absolute asymmetric synthesis of the corresponding alkanol. ATR-IR and NMR confirm integration of aldehyde into the porous material, and a similar localization of newly formed chiral alkanol after reaction. Despite the confinement, the Soai reaction exhibits significant activity and autocatalytic amplification. Comparative catalytic studies with various UiO-MOFs indicate different outcomes in terms of enantiomeric excess, handedness distribution of the product and reaction rate, when compared to pristine solid Soai aldehyde, while the crystalline MOF remains highly stable to action of Zn(iPr)2 vapour. This is an unprecedented example of absolute asymmetric synthesis using MOFs.  相似文献   

3.
An achiral nucleobase cytosine forms an achiral monohydrate crystal (space group: P21/c) by crystallization from a water solution. It was found that the removal of crystal water under reduced pressure at room temperature afforded a chiral crystal of anhydrous cytosine (P212121). The crystal chirality of anhydrous cytosine corresponds to the enantiotopic crystal face of the achiral monohydrate; therefore, when the enantiotopic b1-face is exposed to the reduced pressure, dehydration occurred in the direction from the b1-face to provide [CD(+)310KBr]-cytosine crystal. In contrast, dehydration from the b2-face gave the opposite enantiomorphous [CD(?)310KBr]-cytosine crystal. The correlation between enantiotopic faces and the formed crystal chirality is opposite to that from dehydration by heating. The formed chiral cytosine crystals act as a chiral trigger for asymmetric autocatalysis with enantioenrichment amplification of pyrimidylalkanol.  相似文献   

4.
Catalytic enantioselective directed methylene C(sp3)?H amidation reactions of 8‐alkylquinolines using a Cp*RhIII/chiral carboxylic acid (CCA) hybrid catalytic system are described. A binaphthyl‐based chiral carboxylic acid efficiently differentiates between the enantiotopic methylene C?H bonds, which leads to the formation of C?N bonds with good enantioselectivity.  相似文献   

5.
Creation of new van der Waals heterostructures by stacking different two dimensional (2D) crystals on top of each other in a chosen sequence is the next challenge after the discovery of graphene, mono/few layer of h ‐BN, and transition‐metal dichalcogenides. However, chemical syntheses of van der Waals heterostructures are rarer than the physical preparation techniques. Herein, we demonstrate the kinetic stabilization of 2D ultrathin heterostructure (ca. 1.13–2.35 nm thick) nanosheets of layered intergrowth SnBi2Te4, SnBi4Te7, and SnBi6Te10, which belong to the Snm Bi2n Te3n +m homologous series, by a simple solution based synthesis. Few‐layer nanosheets exhibit ultralow lattice thermal conductivity (κ lat) of 0.3–0.5 W m−1 K−1 and semiconducting electron‐transport properties with high carrier mobility.  相似文献   

6.
An H2O2‐assisted top‐down approach is used to synthesize brightly luminescent, color‐tunable sulfur quantum dots (SQDs), with a photoluminescence quantum yield of up to 23 %. The formation of SQDs involves dissolution of bulk sulfur powder into small particles in an alkaline environment in the presence of polyethylene glycol, followed by H2O2‐assisted etching of polysulfide species, which has the advantage of the passivation of surface states. This synthetic strategy allows us to simultaneously control the final size of SQDs, to tune their emission color, and to improve their emission quantum yield by eliminating surface traps. Down‐conversion white light emitting diodes were also fabricated using blue emissive SQDs and orange emissive copper nanoclusters, with CIE color coordinates of (0.33, 0.32) and a high color rendering index of 91. The water‐soluble, highly luminescent SQDs are promising luminescent materials that can be produced from abundant precursor materials.  相似文献   

7.
We report a highly active and durable water oxidation electrocatalyst based on cubic nanocages with a composition of Ir44Pd10, together with well‐defined {100} facets and porous walls of roughly 1.1 nm in thickness. Such nanocages substantially outperform all the water oxidation electrocatalysts reported in literature, with an overpotential of only 226 mV for reaching 10 mA cm?2geo at a loading of Ir as low as 12.5 μgIr cm?2 on the electrode in acidic media. When benchmarked against a commercial Ir/C electrocatalyst at 250 mV of overpotential, such a nanocage‐based catalyst not only shows enhancements (18.1‐ and 26.2‐fold, respectively) in terms of mass (1.99 A mg?1Ir) and specific (3.93 mA cm?2Ir) activities, but also greatly enhanced durability. The enhancements can be attributed to a combination of multiple merits, including a high utilization efficiency of Ir atoms and an open structure beneficial to the electrochemical oxidation of Ir to the active form of IrOx.  相似文献   

8.
Relative to other cyclic poly‐phosphorus species (that is, cyclo‐Pn), the planar cyclo‐P4 group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4 complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2? dianion to a neutral metal fragment. Treatment of the neutral, molybdenum cyclo‐P4 complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2 and Mo(η4‐P4)(CO)2(CNArDipp2)2 with KC8 produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2? and [Mo(η4‐P4)(CO)2(CNArDipp2)]2?, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3 regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system.  相似文献   

9.
The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo‐SAs) supported on N‐doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration‐corrected scanning transmission electron microscopy (AC‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo‐SAs anchored with one nitrogen atom and two carbon atoms (Mo1N1C2). Importantly, the Mo1N1C2 catalyst displayed much more excellent activity compared with Mo2C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo1N1C2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo‐based HER catalysts.  相似文献   

10.
The metallic 1T‐MoS2 has attracted considerable attention as an effective catalyst for hydrogen evolution reactions (HERs). However, the fundamental mechanism about the catalytic activity of 1T‐MoS2 and the associated phase evolution remain elusive and controversial. Herein, we prepared the most stable 1T‐MoS2 by hydrothermal exfoliation of MoS2 nanosheets vertically rooted into rigid one‐dimensional TiO2 nanofibers. The 1T‐MoS2 can keep highly stable over one year, presenting an ideal model system for investigating the HER catalytic activities as a function of the phase evolution. Both experimental studies and theoretical calculations suggest that 1T phase can be irreversibly transformed into a more active 1T′ phase as true active sites in photocatalytic HERs, resulting in a “catalytic site self‐optimization”. Hydrogen atom adsorption is the major driving force for this phase transition.  相似文献   

11.
12.
Criegee intermediates have implications as key intermediates in atmospheric, organic, and enzymatic reactions. However, their chemistry in aqueous environments is relatively unexplored. Herein, Born–Oppenheimer molecular dynamics (BOMD) simulations examine the dynamic behavior of syn ‐ and anti ‐CH3CHOO at the air–water interface. They show that unlike the simplest Criegee intermediate (CH2OO), both syn ‐ and anti ‐CH3CHOO remain inert towards reaction with water. The unexpected high stability of C2 Criegee intermediates is due to the presence of a hydrophobic methyl substituent on the Criegee carbon that lowers the proton transfer ability and inhibits the formation of a pre‐reaction complex for the Criegee–water reaction. The simulation of the larger Criegee intermediates, (CH3)2COO, syn ‐ and anti ‐CH2C(CH3)C(H)OO on the water droplet surface suggests that strongly hydrophobic substituents determine the reactivity of Criegee intermediates at the air–water interface.  相似文献   

13.
A novel methodology using CsF⋅Al2O3 as a highly efficient, environmentally benign, and reusable solid‐base catalyst was developed to synthesize glutamic acid derivatives by stereoselective 1,4‐addition of glycine derivatives to α,β‐unsaturated esters. CsF⋅Al2O3 showed not only great selectivity toward 1,4‐addtion reactions by suppressing the undesired formation of pyrrolidine derivations by [3+2] cycloadditions, but also offered high yields for the 1,4‐adduct with excellent anti diastereoselectivities. The catalyst was well characterized by using XRD, 19F MAS‐NMR and 19F NMR spectroscopy, FT‐IR, CO2‐TPD, and XPS. And highly basic F from Cs3AlF6 was identified as the most probable active basic site for the 1,4‐addition reactions. Continuous‐flow synthesis of 3‐methyl glutamic acid derivative was successfully demonstrated by using this solid‐base catalysis.  相似文献   

14.
Oxidative thermal removal of the polymeric templates is not trivial for molybdenum oxides and hampers mesostructuring of this material. At ambient oxygen fugacity, MoVI is the thermodynamically stable oxidation state and sublimation of MoO3 leads to a quick loss of the mesostructure through Oswald ripening. Taking advantage of the Boudouard equilibrium allows to fix the oxygen fugacity at a level where non‐volatile MoO2−x is stable while carbonaceous material may be oxidized by CO2. Mesostructured MoO2−x can be chemically converted into MoO3 or MoN under retention of the mesostructure.  相似文献   

15.
Thermodynamics of mixtures of amines with n-alkanes and 1-alkanols   总被引:2,自引:0,他引:2  
The LFAS (Lattice-Fluid Associated Solution) model, which has been applied to alkanol + alkane and to alkanol + alkanol mixtures is now extended to mixtures consisting of one self-associated and one active or weakly self-associated component. The types of association complexes considered are AnBm and AnB with a single A-B bond each. The model is subsequently applied to binary alkanol + amine mixtures with an emphasis on vapor-liquid equilibria. Self-association constants for n-alkyl amines and dialkyl amines are presented along with the pure component lattice-fluid scaling constants. These parameters are used for correlating pure component data on vapor pressures, heats of vaporization, and orthobaric densities as well as mixing properties of amine + alkane mixtures.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.  相似文献   

16.
The glass-transition temperature (T g) in binary mixtures of the primary alkanols with CBr 4 and CHBr 3 has been measured as a function of composition. The results are compared with earlier studies on alkanol solutions of organic chlorides. The initial molar slope (IMS) of theT g vs. composition curve at the pure alkanol indicates formation of a 1:1 halide-alkanol complex stabilized by a specific halogen-oxygen interaction. The IMS values decrease in the order CBr 4 >CHBr 3 >CCl 4 >CHCl 3 >CH 2 Cl 2 , reflecting decreasing stability of the complex.  相似文献   

17.
Synthetic routes that provide facile access to either enantiomeric form of a target compound are particularly valuable. The crystallization‐free dual resolution of phosphine oxides that gives highly enantioenriched materials (up to 94 % ee) in excellent yields is reported. Both enantiomeric oxides have been prepared from a single intermediate, (RP)‐alkoxyphosphonium chloride, which is formed in the course of a selective dynamic kinetic resolution using a single enantiomer of menthol as the chiral auxiliary. The origin of the dual stereoselectivity lies in bifurcation of the reaction pathway of this intermediate, which works as a stereochemical railroad switch. Under controlled conditions, Arbuzov‐type collapse of this intermediate proceeds through C O bond fission with retention of the configuration at the phosphorus center. Conversely, alkaline hydrolysis of the P O bond leads to the opposite SP enantiomer.  相似文献   

18.
The recent discovery of the all‐boron fullerenes or borospherenes, D2d B40−/0, paves the way for borospherene chemistry. Here we report a density functional theory study on the viability of metalloborospherenes: endohedral M@B40 (M=Ca, Sr) and exohedral M&B40 (M=Be, Mg). Extensive global structural searches indicate that Ca@B40 ( 1 , C2v, 1A1) and Sr@B40 ( 3 , D2d, 1A1) possess almost perfect endohedral borospherene structures with a metal atom at the center, while Be&B40 ( 5 , Cs, 1A′) and Mg&B40 ( 7 , Cs, 1A′) favor exohedral borospherene geometries with a η7‐M atom face‐capping a heptagon on the waist. Metalloborospherenes provide indirect evidence for the robustness of the borospherene structural motif. The metalloborospherenes are characterized as charge‐transfer complexes (M2+B402−), where an alkaline earth metal atom donates two electrons to the B40 cage. The high stability of endohedral Ca@B40 ( 1 ) and Sr@B40 ( 3 ) is due to the match in size between the host cage and the dopant. Bonding analyses indicate that all 122 valence electrons in the systems are delocalized as σ or π bonds, being distributed evenly on the cage surface, akin to the D2d B40 borospherene.  相似文献   

19.
Molar excess enthalpies H m E have been determined over the whole composition range for mixtures of benzene, methanol, ethanol, 1-propanol, 2-propanol and 1-butanol with quinoline at 298.15 K using a Thermometric flow calorimeter. The results reflect a strong H-bond association between an alkanol and quinoline which decreases with increasing length of the alkanol chain. The small H m E for (benzene+quinoline) reflects the similarity of the two molecules. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
This work demonstrates a new nonconventional ligand design, imidazole/pyridine‐based nonsymmetrical ditopic ligands ( 1 and 1 S ), to construct a dynamic open coordination cage from nonsymmetrical building blocks. Upon complex formation with Pd2+ at a 1:4 molar ratio, 1 and 1 S initially form mononuclear PdL4 complexes (Pd2+( 1 )4 and Pd2+( 1 S )4) without formation of a cage. The PdL4 complexes undergo a stoichiometrically controlled structural transition to Pd2L4 open cages ((Pd2+)2( 1 )4 and (Pd2+)2( 1 S )4) capable of anion binding, leading to turn‐on anion binding. The structural transitions between the Pd2L4 open cage and the PdL4 complex are reversible. Thus, stoichiometric addition (2 equiv) of free 1 S to the (Pd2+)2( 1 S )4 open cage holding a guest anion ((Pd2+)2( 1 S )4?G?) enables the structural transition to the Pd2+( 1 S )4 complex, which does not have a cage and thus causes the release of the guest anion (Pd2+( 1 S )4+G?).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号