首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen evolution reaction (OER) is an important half reaction in many energy conversion and storage techniques. However, the development of a low‐cost easy‐prepared OER electrocatalyst with high mass activity and rapid kinetics is still challenging. Herein, we report the facile deposition of tannin‐NiFe (TANF) complex film on carbon fiber paper (CP) as a highly efficient OER electrocatalyst. TANF gives rapid OER reaction kinetics with a very small Tafel slope of 28 mV dec?1. The mass activity of TANF reaches 9.17×103 Ag?1 at an overpotential of 300 mV, which is nearly 200‐times larger than that of NiFe double layered hydroxide. Furthermore, tannic acid in TANF can be electrochemically extracted under anodic potential, leaving the inorganic composite NixFe1?xOyHz as the OER‐active species. This work may provide a guide to probing the electrochemical transformation and investigating the reactive species of other metal–organic complexes as heterogeneous electrocatalysts.  相似文献   

2.
3.
The electrodeposition of noble metals using corresponding dissolved metal salts represents an interesting process for the improvement of the electrocatalytic hydrogen evolution reaction (HER) properties of less active substrate materials. The fact that only a small fraction of the dissolved noble metals reaches the substrate represents a serious obstacle to this common procedure. We therefore chose a different path. It was found that the HER activity of Ni42 alloy drastically increased (η=140 mV at j=10 mA cm?2; pH 1) when a platinum counter electrode was used during polarization experiments in acid. This improvement was caused by a platinum transfer from the platinum anode to the steel cathode, a process which occurred simultaneously to the hydrogen evolution. The negligible accumulation of Pt (26 μg) in the electrolyte turns this straight‐forward transfer procedure into a highly cost‐effective, environmentally friendly, and waste reducing approach for the generation of cheap, stable and effective HER electrodes.  相似文献   

4.
5.
6.
7.
Molten LiCl and related eutectic electrolytes are known to permit direct electrochemical reduction of N2 to N3? with high efficiency. It had been proposed that this could be coupled with H2 oxidation in an electrolytic cell to produce NH3 at ambient pressure. Here, this proposal is tested in a LiCl–KCl–Li3N cell and is found not to be the case, as the previous assumption of the direct electrochemical oxidation of N3? to NH3 is grossly over‐simplified. We find that Li3N added to the molten electrolyte promotes the spontaneous and simultaneous chemical disproportionation of H2 (H oxidation state 0) into H? (H oxidation state ?1) and H+ in the form of NH2?/NH2?/NH3 (H oxidation state +1) in the absence of applied current, resulting in non‐Faradaic release of NH3. It is further observed that NH2? and NH2? possess their own redox chemistry. However, these spontaneous reactions allow us to propose an alternative, truly catalytic cycle. By adding LiH, rather than Li3N, N2 can be reduced to N3? while stoichiometric amounts of H? are oxidised to H2. The H2 can then react spontaneously with N3? to form NH3, regenerating H? and closing the catalytic cycle. Initial tests show a peak NH3 synthesis rate of 2.4×10?8 mol cm?2 s?1 at a maximum current efficiency of 4.2 %. Isotopic labelling with 15N2 confirms the resulting NH3 is from catalytic N2 reduction.  相似文献   

8.
9.
Metal–organic framework (MOFs) two‐dimensional (2D) nanosheets have many coordinatively unsaturated metal sites that act as active centres for catalysis. To date, limited numbers of 2D MOFs nanosheets can be obtained through top‐down or bottom‐up synthesis strategies. Herein, we report a 2D oxide sacrifice approach (2dOSA) to facilely synthesize ultrathin MOF‐74 and BTC MOF nanosheets with a flexible combination of metal sites, which cannot be obtained through the delamination of their bulk counterparts (top‐down) or the conventional solvothermal method (bottom‐up). The ultrathin iron–cobalt MOF‐74 nanosheets prepared are only 2.6 nm thick. The sample enriched with surface coordinatively unsaturated metal sites, exhibits a significantly higher oxygen evolution reaction reactivity than bulk FeCo MOF‐74 particles and the state‐of‐the‐art MOF catalyst. It is believed that this 2dOSA could provide a new and simple way to synthesize various ultrathin MOF nanosheets for wide applications.  相似文献   

10.
Owing to the transient nature of the intermediates formed during the oxygen evolution reaction (OER) on the surface of transition metal oxides, their nature remains largely elusive by the means of simple techniques. The use of chemical probes is proposed, which, owing to their specific affinities towards different oxygen species, unravel the role played by these species on the OER mechanism. For that, tetraalkylammonium (TAA) cations, previously known for their surfactant properties, are introduced, which interact with the active oxygen sites and modify the hydrogen bond network on the surface of OER catalysts. Combining chemical probes with isotopic and pH‐dependent measurements, it is further demonstrated that the introduction of iron into amorphous Ni oxyhydroxide films used as model catalysts deeply modifies the proton exchange properties, and therefore the OER mechanism and activity.  相似文献   

11.
应用射频反应磁控溅射法制备阳极催化氧化铁镍薄膜,由循环伏安、线性扫描伏安、极化曲线和电化学交流阻抗谱等研究发生在该电极上的氧化反应.结果表明,作为活化中心的铁能使过电势降低,并且随着溅射过程氧流量的增加催化性能增强,铁的掺入使得速率限定步骤由OH-的释放变为氧原子的结合.与镍相比,氧化铁镍是更理想的催化阳极材料,当电流密度为50 mA/cm2时,其氧的过电势比镍的下降了500 mV.  相似文献   

12.
13.
Polymer electrolyte membranes employed in contemporary fuel cells severely limit device design and restrict catalyst choice, but are essential for preventing short‐circuiting reactions at unselective anode and cathode catalysts. Herein, we report that nickel sulfide Ni3S2 is a highly selective catalyst for the oxygen reduction reaction in the presence of 1.0 m formate. We combine this selective cathode with a carbon‐supported palladium (Pd/C) anode to establish a membrane‐free, room‐temperature formate fuel cell that operates under benign neutral pH conditions. Proof‐of‐concept cells display open circuit voltages of approximately 0.7 V and peak power values greater than 1 mW cm−2, significantly outperforming the identical device employing an unselective platinum (Pt) cathode. The work establishes the power of selective catalysis to enable versatile membrane‐free fuel cells.  相似文献   

14.
The fabrication of metal-supported hybrid structures with enhanced properties typically requires external energy input, such as pyrolysis, photolysis, and electrodeposition. In this study, silver-nanoparticle-decorated transition-metal hydroxide (TMH) composites were synthesized by an approach based on a spontaneous redox reaction (SRR) at room temperature. The SRR between silver ions and TMH provides a simple and facile route to establish effective and stable heterostructures that can enhance the oxygen evolution reaction (OER) activity. Ag@Co(OH)x grown on carbon cloth exhibits outstanding OER activity and durability, even superior to IrO2 and many previously reported OER electrocatalysts. Experimental and theoretical analysis demonstrates that the strong electronic interaction between Ag and Co(OH)2 activates the silver clusters as catalytically OER active sites, effectively optimizing the binding energies with reacted intermediates and facilitating the OER kinetics.  相似文献   

15.
The topotactic conversion of cobalt phosphide nanoarray on Ti mesh into a cobalt phosphate nanoarray (Co‐Pi NA) via oxidative polarization in phosphate‐buffered water is presented. As a 3D oxygen evolution reaction (OER) catalyst electrode at neutral pH, the resulting Co‐Pi NA/Ti shows exceptionally high catalytic activity and demands an overpotential of only 450 mV to drive a geometrical catalytic current density of 10 mA cm−2. Notably, this catalyst also shows superior long‐term electrochemical stability. The excellent catalytic activity can be attributed to that such 3D nanoarray configuration allows for the exposure of more active sites and the easier diffusion of electrolytes and oxygen.  相似文献   

16.
High-resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H-MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

17.
Five-fold intertwined AgxNi1−x (x=0.01–0.25) heterogeneous alloy nanocrystal (NC) catalysts, prepared through unique reagent combinations, are presented. With only ca. 5 at % Ag (AgNi-5), Pt-like activity has been achieved at pH 14. To reach a current density of 10 mA cm−2 the extremely stable AgNi-5 requires an overpotential of 24.0±1.2 mV as compared to 20.1±0.8 mV for 20 % Pt/C, both with equal catalyst loading of 1.32 mg cm−2. The turnover frequency (TOF) is as high as 2.1 H2 s−1 at 50 mV (vs. RHE). Site-specific elemental analyses show the Ag:Ni compositional variation, where the apex and edges of the decahedra are Ag-rich, thereby exposing Ni onto the faces to achieve maximum charge transport for an exceptional pH universal HER activity. DFT calculations elucidate the relative H-atom adsorption capability of the Ni centers as a function of their proximity to Ag atom.  相似文献   

18.
We report a general approach for the synthesis of multishell mixed‐metal oxyphosphide particles. Seven‐layer Mn‐Co oxide particles were first prepared by thermal treatment of Mn‐Co coordination polymer precursors. Afterwards, these multishell Mn‐Co oxide particles were further transformed into multishell Mn‐Co oxyphosphide particles through a phosphidation reaction. This approach is very versatile and can be applied to synthesize other multishell mixed‐metal oxyphosphide particles with different compositions. By applying a constant electrochemical potential, these multishell Mn‐Co oxyphosphide particles can be activated to produce Mn‐Co oxide/hydroxide species in their nanoshells and then show greatly enhanced electrocatalytic activity in the oxygen evolution reaction (OER).  相似文献   

19.
Nickel iron oxide is considered a benchmark nonprecious catalyst for the oxygen evolution reaction (OER). However, the nature of the active site in nickel iron oxide is heavily debated. Here we report direct spectroscopic evidence for the different active sites in Fe‐free and Fe‐containing Ni oxides. Ultrathin layered double hydroxides (LDHs) were used as defined samples of metal oxide catalysts, and 18O‐labeling experiments in combination with in situ Raman spectroscopy were employed to probe the role of lattice oxygen as well as an active oxygen species, NiOO?, in the catalysts. Our data show that lattice oxygen is involved in the OER for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. Moreover, NiOO? is a precursor to oxygen for Ni and NiCo LDHs, but not for NiFe and NiCoFe LDHs. These data indicate that bulk Ni sites in Ni and NiCo oxides are active and evolve oxygen via a NiOO? precursor. Fe incorporation not only dramatically increases the activity, but also changes the nature of the active sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号